Presentation is loading. Please wait.

Presentation is loading. Please wait.

Enhanced Entity-Relationship and UML Modeling

Similar presentations

Presentation on theme: "Enhanced Entity-Relationship and UML Modeling"— Presentation transcript:

1 Enhanced Entity-Relationship and UML Modeling
Chapter 4 Enhanced Entity-Relationship and UML Modeling

2 Enhanced-ER (EER) Model Concepts
EER Model: Includes all modeling concepts of basic ER and Additional concepts: Subclasses/superclasses.(lớp con/lớp cha) Specialization(chuyên biệt)/generalization(tổng quát). Categories, attribute inheritance (phân cấp) It is used to model applications more completely and accurately if needed It includes some object-oriented concepts, such as inheritance

3 Subclasses and Superclasses
An entity type may have additional meaningful subgroupings of its entities Example: Employee may be further grouped into Secretary, Engineer, Manager, Technician,… Each of these groupings is a subset of EMPLOYEE entities Each is called a subclass of EMPLOYEE EMPLOYEE is the superclass for each of these subclasses These are called superclass/subclass relationships. Example: Employee/secretary. Employee/technician

4 Subclasses and Superclasses
Employees Technician Manager Engineer Secretary SubClasses SuperClass

5 Subclasses and Superclasses
Inheritance attribute: Subclass will inherit some attributes and relationships of the Superclass and itsseft attributes. Relationship between Superclasses and Subclasses is ISA

6 Subclasses and Superclasses

7 Specialization Specialization (chuyên biệt): Is the process of defining a set of subclasses of a superclass The set of subclasses is based upon some distinguishing characteristics of the entities in the superclass Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based upon job type. May have several specializations of the same superclass

8 Specialization Example: Another specialization of EMPLOYEE based in method of pay is {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}. Superclass/subclass relationships and specialization can be diagrammatically represented in EER diagrams Attributes of a subclass are called specific attributes. For example, TypingSpeed of SECRETARY The subclass can participate in specific relationship types. For example, BELONGS_TO of HOURLY_EMPLOYEE

9 Example of a Specialization

10 Generalization (tổng quát hóa)
The reverse of the specialization process Several classes with common features are generalized into a superclass; original classes become its subclasses Example: CAR, TRUCK generalized into VEHICLE; both CAR, TRUCK become subclasses of the superclass VEHICLE. We can view {CAR, TRUCK} as a specialization of VEHICLE Alternatively, we can view VEHICLE as a generalization of CAR and TRUCK

11 Generalization (tổng quát hóa)

12 Constraints on Specialization/Generalization
Two other conditions apply to a specialization/generalization Disjointness Constraint: Specifies that the subclasses of the specialization must be disjointed (an entity can be a member of at most one of the subclasses of the specialization). Specified by d in EER diagram Overlaping contraint: that is the same entity may be a member of more than one subclass of the specialization. Specified by o in EER diagram

13 Constraints on Specialization/Generalization

14 Constraints on Specialization/Generalization

15 Constraints on Specialization/Generalization
Completeness Constraint: Total (Ràng buộc toàn bộ): specifies that every entity in the superclass must be a member of some subclass in the specialization/ generalization. Shown in EER diagrams by a double line Partial(Ràng buộc từng phần): allows an entity not to belong to any of the subclasses Shown in EER diagrams by a single line.

16 Constraints on Specialization/Generalization

17 Constraints on Specialization/Generalization
Hence, we have four types of specialization/generalization: Disjoint, total Disjoint, partial Overlapping, total Overlapping, partial Note: Generalization usually is total because the superclass is derived from the subclasses.

18 Example of disjoint partial Specialization

19 Specialization Hierarchies and Lattices (chuyên biệt phân cấp and lưới)
A subclass may itself have further subclasses specified on it Forms a hierarchy or a lattice Hierarchy has a constraint that every subclass has only one superclass (called single inheritance) In a lattice, a subclass can be subclass of more than one superclass (called multiple inheritance) In a lattice or hierarchy, a subclass inherits attributes not only of its direct superclass, but also of all its predecessor superclasses Một lớp con có thể có lớp con của chính nó bao gồm 2 loại Phân cấp (Hierachy): là ràng buộc trong đó tất cả các lớp con chỉ tham gia vào một liên kết lớp cha/con(thừa kế đơn ánh. Lưới (Lattice) là ráng buộc trong đó lớp con có thể tham gia vào nhiều hơn 1 liên kết cha/con (thừa kế bội) Trong loại chuyên biết này lớp con không chỉ kế thừa thuộc tính của lớp cha mà còn kế thừa thuộc tính cua lớp cha của cha nó.

20 Specialization Hierarchies and Lattices (chuyên biệt phân cấp and lưới)
Specialization Lattices example:

21 Specialization Hierarchies and Lattices (chuyên biệt phân cấp and lưới)

22 Specialization Shared Subclasses
Shared subclass: A subclass with more than one superclass. Can have specialization hierarchies or lattices, or generalization hierarchies or lattices. In specialization, start with an entity type and then define subclasses of the entity type by successive specialization (top down conceptual refinement process) In generalization, start with many entity types and generalize those that have common properties (bottom up conceptual synthesis process)

23 Specialization / Generalization Lattice Example (UNIVERSITY)

24 Categories (UNION TYPES)
Superclass/subclass relationship with more than one superclass, where the superclasses represent different entity types. In this case, the subclass will represent a collection of objects that is a subset of the UNION of distinct entity types. Such a subclass is called a category or UNION TYPE. Example: Database for vehicle registration, vehicle owner can be a person, a bank (holding a lien on a vehicle) or a company. Tất cả các mối quan hệ lớp cha / lớp con chúng ta đã thấy đều có một lớp cha duy nhất A shared subclass is subclass in more than one distinct superclass/subclass relationships, where each relationships has a single superclass (multiple inheritance)

25 Categories (UNION TYPES)
Category (subclass) OWNER is a subset of the union of the three superclasses COMPANY, BANK, and PERSON A category member must exist in at least one of its superclasses Note: The difference from shared subclass, which is subset of the intersection of its superclasses (shared subclass member must exist in all of its superclasses).


27 Formal Definitions of EER Model (1)
Class C: A set of entities; could be entity type, subclass, superclass, category. Subclass S: A class whose entities must always be subset of the entities in another class, called the superclass C of the superclass/subclass (or IS-A) relationship S/C: S ⊆ C Specialization Z: Z = {S1, S2,…, Sn} a set of subclasses with same superclass G; hence, G/Si a superclass relationship for i = 1, …., n.

28 Formal Definitions of EER Model (1)
G is called a generalization of the subclasses {S1, S2,…, Sn} Z is total if we always have: S1 ∪ S2 ∪ … ∪ Sn = G; Otherwise, Z is partial. Z is disjoint if we always have: Si ∩ S2 empty-set for i ≠ j; Otherwise, Z is overlapping.

29 Formal Definitions of EER Model (2)
Subclass S of C is predicate defined if predicate p on attributes of C is used to specify membership in S; that is, S = C[p], where C[p] is the set of entities in C that satisfy p A subclass not defined by a predicate is called user- defined Attribute-defined specialization: if a predicate A = ci (where A is an attribute of G and ci is a constant value from the domain of A) is used to specify membership in each subclass Si in Z. Note: If ci ≠ cj for i ≠ j, and A is single-valued, then the attribute-defined specialization will be disjoint.

30 Formal Definitions of EER Model (2)
Category or UNION type T A class that is a subset of the union of n defining superclass. D1, D2,…Dn, n>1: T ⊆ (D1 ∪ D2 ∪ … ∪ Dn) A predicate pi on the attributes of T. If a predicate pi on the attributes of Di can specify entities of Di that are members of T. If a predicate is specified on every Di: T = (D1[p1] ∪ D2[p2] ∪…∪ Dn[pn] Note: The definition of relationship type should have 'entity type' replaced with 'class'.

31 Cardinality Constraints
Cardinality Constraint: Quantification of the relationship between two concepts or classes (a constraint on aggregation) MINIMUM (A,B) = n: At a minimum, one instance of A is related to at least n instances of B. n = 0 MIN(A,B) = MIN(Person, Car) = 0 n = 1 MIN(A,B) = MIN(Cust, Ship-address) = 1 n = inf. MIN(A,B) = inf. NOT POSSIBLE n = x (fixed) MIN(A,B) = x MIN(Car, Wheels) = 4

32 Formal Definitions of EER Model (2)
MAXIMUM (A,B) = n: At a maximum, one instance of A is related to at least n instances of B n = 0 MAX(A,B) = 0 DOES NOT ARISE n = 1 MAX(A,B) = 1 MAX(Cust, Ship-address) = 1 n = inf. MAX(A,B) = inf. MAX(Cust, Orders) = inf. n = x (fixed) MAX(A,B) = x MAX(Stud, Course) = 6

33 Participation constraints
MIN (A,B) = 0 Optional Participation MIN (A,B) = 1 Mandatory Participation MAX (A,B) = 0 No Participation MIN (A,B) = x, MAX (A,B) = y Range Constrained Participation

Download ppt "Enhanced Entity-Relationship and UML Modeling"

Similar presentations

Ads by Google