Presentation is loading. Please wait.

Presentation is loading. Please wait.

CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia.

Similar presentations


Presentation on theme: "CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia."— Presentation transcript:

1

2 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 18 – Running a Program I aka Compiling, Assembling, Linking, Loading (CALL) 2004-10-11 Finally, Tivo for the radio!   Griffin Technologies released their new “radioSHARK” for $70 that allows you to pause live radio and “timeshift” your radio shows. Easily download them easily to your iPod…cool! griffintechnology.com/products/radioshark/

3 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (2) Garcia, Fall 2004 © UCB Overview Interpretation vs Translation Translating C Programs Compiler Assembler Linker (next time) Loader (next time) An Example (next time)

4 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (3) Garcia, Fall 2004 © UCB Language Continuum In general, we interpret a high level language if efficiency is not critical or translated to a lower level language to improve performance Easy to program Inefficient to interpret Efficient Difficult to program Scheme Java C++CAssemblymachine language Java bytecode

5 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (4) Garcia, Fall 2004 © UCB Interpretation vs Translation How do we run a program written in a source language? Interpreter: Directly executes a program in the source language Translator: Converts a program from the source language to an equivalent program in another language For example, consider a Scheme program foo.scm

6 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (5) Garcia, Fall 2004 © UCB Interpretation Scheme program: foo.scm Scheme Interpreter

7 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (6) Garcia, Fall 2004 © UCB Translation Scheme program: foo.scm Hardware Scheme Compiler Executable(mach lang pgm): a.out °Scheme Compiler is a translator from Scheme to machine language.

8 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (7) Garcia, Fall 2004 © UCB Interpretation Any good reason to interpret machine language in software? SPIM – useful for learning / debugging Apple Macintosh conversion Switched from Motorola 680x0 instruction architecture to PowerPC. Could require all programs to be re- translated from high level language Instead, let executables contain old and/or new machine code, interpret old code in software if necessary

9 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (8) Garcia, Fall 2004 © UCB Interpretation vs. Translation? Easier to write interpreter Interpreter closer to high-level, so gives better error messages (e.g., SPIM) Translator reaction: add extra information to help debugging (line numbers, names) Interpreter slower (10x?) but code is smaller (1.5X to 2X?) Interpreter provides instruction set independence: run on any machine Apple switched to PowerPC. Instead of retranslating all SW, let executables contain old and/or new machine code, interpret old code in software if necessary

10 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (9) Garcia, Fall 2004 © UCB Steps to Starting a Program C program: foo.c Compiler Assembly program: foo.s Assembler Linker Executable(mach lang pgm): a.out Loader Memory Object(mach lang module): foo.o lib.o

11 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (10) Garcia, Fall 2004 © UCB Compiler Input: High-Level Language Code (e.g., C, Java such as foo.c ) Output: Assembly Language Code (e.g., foo.s for MIPS) Note: Output may contain pseudoinstructions Pseudoinstructions: instructions that assembler understands but not in machine (last lecture) For example: mov $s1,$s2  or $s1,$s2,$zero

12 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (11) Garcia, Fall 2004 © UCB Upcoming Calendar Week #MonWedThurs LabFri #7 This week Running Program I Running Program II Running Program Caches #8 Midterm week Caches Midterm @ 7pm 1 Pimintel Caches Caches Midterm grades out

13 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (12) Garcia, Fall 2004 © UCB Administrivia…Midterm in 1 week! 2004-10-18 @ 7-10pm in 1 Piminitel Covers labs,hw,proj,lec up to Caches Last sem midterm + answers on www Bring… NO backpacks, cells, calculators, pagers, PDAs 2 Pens (we’ll provide write-in exam booklets) One handwritten (both sides) 8.5”x11” paper One green sheet (corrections below to bugs from “Core Instruction Set”) 1)Opcode wrong for Load Word. It should say 23hex, not 0 / 23hex. 2)sll and srl should shift values in R[rt], not R[rs] i.e. sll / srl : R[rd] = R[rt] << shamt

14 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (13) Garcia, Fall 2004 © UCB Administrivia…Other stuff Bug in Friday’s slides (slide 19) WAS: ori $at,$zero,lower 16 bits SHOULD BE: ori $at,$at,lower 16 bits Grades in for Homework XX, Proj YY You have one week to request official ‘regrade’ from reader – specify reason. Reader will then regrade entire HW/Proj (grade may go down). In exceptional cases, can appeal to TA to intervene. If no appeal generated within a week, grade frozen, no way to change after that. (Regrade could still be pending, tho)

15 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (14) Garcia, Fall 2004 © UCB Where Are We Now? C program: foo.c Assembly program: foo.s Executable(mach lang pgm): a.out Compiler Assembler Linker Loader Memory Object(mach lang module): foo.o lib.o

16 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (15) Garcia, Fall 2004 © UCB Assembler Input: Assembly Language Code (e.g., foo.s for MIPS) Output: Object Code, information tables (e.g., foo.o for MIPS) Reads and Uses Directives Replace Pseudoinstructions Produce Machine Language Creates Object File

17 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (16) Garcia, Fall 2004 © UCB Assembler Directives (p. A-51 to A-53) Give directions to assembler, but do not produce machine instructions.text : Subsequent items put in user text segment.data : Subsequent items put in user data segment.globl sym : declares sym global and can be referenced from other files.asciiz str : Store the string str in memory and null-terminate it.word w1…wn : Store the n 32-bit quantities in successive memory words

18 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (17) Garcia, Fall 2004 © UCB Pseudoinstruction Replacement Asm. treats convenient variations of machine language instructions as if real instructions Pseudo:Real: subu $sp,$sp,32addiu $sp,$sp,-32 sd $a0, 32($sp) sw $a0, 32($sp) sw $a1, 36($sp) mul $t7,$t6,$t5mul $t6,$t5 mflo $t7 addu $t0,$t6,1addiu $t0,$t6,1 ble $t0,100,loopslti $at,$t0,101 bne $at,$0,loop la $a0, strlui $at,left(str) ori $a0,$at,right(str)

19 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (18) Garcia, Fall 2004 © UCB Producing Machine Language (1/2) Simple Case Arithmetic, Logical, Shifts, and so on. All necessary info is within the instruction already. What about Branches? PC-Relative So once pseudoinstructions are replaced by real ones, we know by how many instructions to branch. So these can be handled easily.

20 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (19) Garcia, Fall 2004 © UCB Producing Machine Language (2/2) What about jumps ( j and jal )? Jumps require absolute address. What about references to data? la gets broken up into lui and ori These will require the full 32-bit address of the data. These can’t be determined yet, so we create two tables…

21 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (20) Garcia, Fall 2004 © UCB Symbol Table List of “items” in this file that may be used by other files. What are they? Labels: function calling Data: anything in the.data section; variables which may be accessed across files First Pass: record label-address pairs Second Pass: produce machine code Result: can jump to a later label without first declaring it

22 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (21) Garcia, Fall 2004 © UCB Relocation Table List of “items” for which this file needs the address. What are they? Any label jumped to: j or jal -internal -external (including lib files) Any piece of data -such as the la instruction

23 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (22) Garcia, Fall 2004 © UCB Object File Format object file header: size and position of the other pieces of the object file text segment: the machine code data segment: binary representation of the data in the source file relocation information: identifies lines of code that need to be “handled” symbol table: list of this file’s labels and data that can be referenced debugging information

24 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (23) Garcia, Fall 2004 © UCB Peer Instruction 1. Assembler knows where a module’s data & instructions are in relation to other modules. 2. Assembler will ignore the instruction Loop:nop because it does nothing. 3. Java designers used an interpreter (rather than a translater) mainly because of (at least one of): ease of writing, better error msgs, smaller object code. ABC 1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFT 7: TTF 8: TTT

25 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (24) Garcia, Fall 2004 © UCB Peer Instruction Answer 1. Assembler knows where a module’s data & instructions are in relation to other modules. 2. Assembler will ignore the instruction Loop:nop because it does nothing. 3. Java designers used an interpreter (rather than a translater) mainly because of (at least one of): ease of writing, better error msgs, smaller object code. ABC 1: FFF 2: FFT 3: FTF 4: FTT 5: TFF 6: TFT 7: TTF 8: TTT 1. Assembler only sees one compiled program at a time, that’s why it has to make a symbol & relocation table. It’s the job of the linker to link them all together…F! 2. Assembler keeps track of all labels in symbol table…F! 3. Java designers used an interpreter mainly because of code portability…F!

26 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (25) Garcia, Fall 2004 © UCB And in conclusion… C program: foo.c Compiler Assembly program: foo.s Assembler Linker Executable(mach lang pgm): a.out Loader Memory Object(mach lang module): foo.o lib.o

27 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (26) Garcia, Fall 2004 © UCB Peer Instruction Which of the following instructions may need to be edited during link phase? Loop: lui $at, 0xABCD# a ori $a0,$at, 0xFEDC# b jal add_link# c bne $a0,$v0, Loop# d A. a. only B. b. only C. c. only D. d. only E. a., b., and c. F. All of the above

28 CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (27) Garcia, Fall 2004 © UCB Peer Instruction Answer Which of the following instructions may need to be edited during link phase? Loop: lui $at, 0xABCD# a ori $a0,$at, 0xFEDC# b jal add_link # c bne $a0,$v0, Loop# d A. a. only B. b. only C. c. only D. d. only E. a., b., and c. F. All of the above } data reference; relocate subroutine; relocate PC-relative branch; OK


Download ppt "CS 61C L18 Running a Program aka Compiling, Assembling, Loading, Linking (CALL) I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia."

Similar presentations


Ads by Google