Presentation is loading. Please wait.

Presentation is loading. Please wait.

XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 1/62 Bulk Properties of QCD Matter Kai Schweda, University of Heidelberg / GSI Darmstadt Many.

Similar presentations


Presentation on theme: "XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 1/62 Bulk Properties of QCD Matter Kai Schweda, University of Heidelberg / GSI Darmstadt Many."— Presentation transcript:

1 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 1/62 Bulk Properties of QCD Matter Kai Schweda, University of Heidelberg / GSI Darmstadt Many thanks to organizers !

2 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 2/62 Outline  Introduction  Hadron Abundances - T ch  Collective Flow - T fo,   Heavy Quarks - open charm and quarkonia

3 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Introduction

4 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 4/62 Source: Michael Turner, National Geographic (1996) Quark Gluon Plasma: (a)Deconfined and (b)thermalized state of quarks and gluons  Study partonic EOS at RHIC and LHC (?) Probe thermalization using heavy-quarks Quark Gluon Plasma

5 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Nuclear phase diagram 1)Heavy quarks with ALICE at LHC: - Study medium properties - pQCD in hot and dense environment 2)FAIR/GSI program: - Search for the possible phase boundary. - Chiral symmetry restoration Energy scan

6 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 6/62 Colliding Heavy Nuclei

7 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 7/62 High-Energy Nuclear Collisions 1) Initial condition:2) System evolves:3) Bulk freeze-out -Baryon transfer- parton/hadron expansion- hadronic dof - E T production- inel. interactions cease: -Partonic dof particle ratios, T ch,  B - elas. interactions cease Particle spectra, T th, Time  Plot: Steffen A. Bass, Duke University

8 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 8/62 Collision Geometry x z Non-central Collisions Au + Au  s NN = 200 GeV Uncorrected Number of participants: number of incoming nucleons in the overlap region Number of binary collisions: number of inelastic nucleon-nucleon collisions Charged particle multiplicity  collision centrality Reaction plane: x-z plane

9 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Hadron Abundances

10 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 10/62 Particle Multilplicities PHOBOS fit HIJING BBar Armesto et al. AMPT Eskola CGC KLN ASW DPMJET-III EHNRR  at LHC, dN/d   1000  3000  estimate energy density Theory points: HI at LHC – last call for predictions, CERN, May 2007.PHOBOS compilation: W. Busza, SQM07.

11 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 11/62 EoS from Lattice QCD 1) Large increase in  !  Large increase in Ndof: Hadrons vs. partons 2) T C ~ 160 MeV 3) Boxes indicate max. initial temperatures  Longest expansion duration at LHC  Expect large partonic collectivity at LHC Z. Fodor et al, JHEP 0203:014(02) C.R. Allton et al, hep-lat/0204010 F. Karsch, Nucl. Phys. A698, 199c(02). LHC ?RHICSPS

12 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 12/62 HI - Collision History Plot: R. Stock, arXiv:0807.1610 [nucl-ex].  T c(ritical) : quarks and gluon  hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out  T fo : particle spectra freeze out

13 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 13/62 Graphik: Max-Plack-Institut für Plasmaphysik Wavelength and Intensity solely determined by temperature T solar = 5500 °C (at the sun’s surface) Solar Spectrum

14 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 14/62 N     K+K+ K0K0 K-K-      N E = mc 2 (GeV) Teilchenhäufigkeit 0.40.801.61.2 0.1 1.0 10.0 100. 1000  Lichtquelle  Teilchenquelle  Häufigkeit von Teilchen am besten beschrieben durch T = 2 000 000 000 000  C = 2 Trillionen  C  100 000 mal heisser als im Innern der Sonne ! Wie heiss ist die Quelle ?

15 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 15/62 Chemical Freeze-out Model Hadron resonance ideal gas Compare particle ratios to experimental data Q i : 1 for u and d, -1 for u and d s i : 1 for s, -1 for s g i : spin-isospin freedom m i : particle mass All resonances and unstable particles are decayed Refs. J.Rafelski PLB(1991)333 P. Braun-Munzinger et al., nucl-th/0304013 T ch : Chemical freeze-out temperature  q : light-quark chemical potential  s : strange-quark chemical potential V: volume term, drops out for ratios!  s : strangeness under-saturation factor Density of particle i  B = 3 q  S =  q - s

16 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Hadron Yield  Ratios 1) At RHIC: T ch = 160 ± 10 MeV  B = 25 ± 5 MeV 2)  S = 1.  The hadronic system is thermalized at RHIC. 3) Short-lived resonances show deviations.  There is life after chemical freeze-out. RHIC white papers - 2005, Nucl. Phys. A757, STAR: p102; PHENIX: p184; Statistical Model calculations: P. Braun-Munzinger et al. nucl-th/0304013.

17 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 17/62 A. Andronic et al., NPA 772 (2006) 167. With increasing energy: T ch increases and saturates at T ch = 160 MeV Coincides with Hagedorn temperature Coincides with early lattice results  limiting temperature for hadrons, T ch  160 MeV !  B decreases,  B = 1MeV at LHC  Nearly net-baryon free ! Chemical Freeze-Out vs Energy

18 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 18/62 QCD Phase Diagram

19 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 19/62 Baryon Ratios Compilation: N. Xu With increasing energy: Baryon ratios approach unity At LHC, pbar / p  0.95  with increasing collision energy, production of matter and anti-matter gets closer

20 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 20/62 ‘Elementary’ p+p Collisions  Low multiplicities  use canonical ensemble: Strangeness locally conserved!  particle yields are well reproduced  Strangeness not equilibrated ! (  s = 0.5) Statistical Model Fit: F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997).

21 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 21/62 HI - Collision History Plot: R. Stock, arXiv:0807.1610 [nucl-ex].  T c(ritical) : quarks and gluon  hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV  T fo : particle spectra freeze out

22 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Collective Flow

23 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 23/62 Pressure, Flow, … Thermodynamic identity  – entropy p – pressure U – energy V – volume  = k B T, thermal energy per dof In A+A collisions, interactions among constituents and density distribution lead to: pressure gradient  collective flow  number of degrees of freedom (dof)  Equation of State (EOS)  cumulative – partonic + hadronic

24 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 24/62 Momentum Distributions* 2 ] [(GeV/ 2 c) -1 dy dp N d T   K (dE/dx) p  K (kink) *Au+Au @130 GeV, STAR T th =107±8 [MeV] =0.55±0.08 [c] n=0.65±0.09  2 /dof=106/90 solid lines: fit range Typical mass ordering in inverse slope from light  to heavier  Two-parameter fit describes yields of , K, p,  T th = 90  10 MeV = 0.55  0.08 c  Disentangle collective motion from thermal random walk  K (dE/dx) p  K (kink)

25 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 25/62 (anti-)Protons From RHIC Au+Au@130GeV (anti-)Protons From RHIC Au+Au@130GeV More central collisions Centrality dependence: - spectra at low momentum de-populated, become flatter at larger momentum  stronger collective flow in more central coll.! STAR: Phys. Rev. C70, 041901(R).

26 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 26/62 Thermal Model + Radial Flow Fit Source is assumed to be: –in local thermal equilibration: T fo –boosted in transverse radial direction:  = f(  s ) random boosted E.Schnedermann, J.Sollfrank, and U.Heinz, Phys. Rev. C48, 2462(1993)

27 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 27/62 D-meson collective flow Large collective flow velocity  Spectrum moves to larger momentum

28 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 28/62 HI - Collision History Plot: R. Stock, arXiv:0807.1610 [nucl-ex].  T c(ritical) : quarks and gluon  hadrons, T c(ritical) = 160 MeV  T ch(emical) : hadron abundancies freeze out, T ch(emical) = 160 MeV  T fo : particle spectra freeze out, T fo  100 MeV : , K, p

29 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 29/62 1) Multi-strange hadrons  and  freeze-out earlier than ( , K, p)  Collectivity prior to hadronization  Collectivity prior to hadronization 2) Sudden single freeze-out*: Resonance decays lower T fo for ( , K, p)  Collectivity prior to hadronization  Partonic Collectivity ?  Partonic Collectivity ? Kinetic Freeze-out at RHIC STAR Data: Nucl. Phys. A757, (2005 102), *A. Baran, W. Broniowski and W. Florkowski, Acta. Phys. Polon. B 35 (2004) 779. STAR Preliminary

30 Anisotropy Parameter v 2 y x pypy pxpx coordinate-space-anisotropy  momentum-space-anisotropy Initial/final conditions, EoS, degrees of freedom

31 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 31/62 v 2 in the Low-p T Region P. Huovinen, private communications, 2004 - v 2 approx. linear in p T, mass ordering from light  to heavier  àcharacteristic of hydrodynamic flow ! à sensitive to equation of state

32 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 32/62 Non-ideal Hydro-dynamics M.Luzum and R. Romatschke, PRC 78 034915 (2008); P. Romatschke, arXiv:0902.3663.  finite shear viscosity  reduces elliptic flow  many caveats, e.g.: - initial eccentricity  (Glauber, CGC, …) - equation of state - hadronic contribution to  /s String theory predicts:  /s > 1/4 

33 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 33/62 Elliptic Flow vs Collision Energy  Centrality dependence: - initial eccentricity  - overlap area S  Collision energy dep.: - multiplicity density dN ch /dy  in central collisions at RHIC, hydro-limit seems reached ! NA49, Phys. Rev. C68, 034903 (2003); STAR, Phys. Rev. C66, 034904 (2002); Hydro-calcs.: P. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev.C62, 054909 (2000). Glauber initial conditions

34 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 34/62 v 2 of  and multi-strange   Strange-quark flow - partonic collectivity at RHIC ! QM05 conference: M. Oldenburg; nucl-ex/0510026.

35 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 35/62 Collectivity, Deconfinement at RHIC - v 2, spectra of light hadrons and multi-strange hadrons - scaling with the number of constituent quarks At RHIC, it seems we have:  Partonic Collectivity êDeconfinement  Thermalization ? PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04) S. Voloshin, NPA715, 379(03) Models: Greco et al, PRC68, 034904(03) X. Dong, et al., Phys. Lett. B597, 328(04). ….

36 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 36/62 Collectivity  Energy Dependence  Collectivity parameters and increase with collision energy  strong collective expansion at RHIC ! RHIC  0.6  expect strong partonic expansion at LHC, LHC  0.8, T fo  T ch K.S., ISMD07, arXiv:0801.1436 [nucl-ex].

37 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 37/62 Partonic Collectivity at RHIC 1) Copiously produced hadrons freeze-out ,K,p: T fo = 100 MeV,  T = 0.6 (c) >  T (SPS) 2) Multi-strange hadrons freeze-out: T fo = 160-170 MeV (~ T ch ),  T = 0.4 (c) 3) Multi-strange v 2 :  and multi-strange hadrons  and  do flow! 4) Model - dependent  /s: (0?),1 - 10 x 1/4  Deconfinement & Partonic (u,d,s) Collectivity !

38 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Heavy Quarks

39 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Heavy  flavor: a unique probe X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. m c,b >>  QCD : new scale m c,b  const., m u,d,s ≠ const. initial conditions:  test pQCD,  R,  F probe gluon distribution early partonic stage: diffusion (  ), drag (  ), flow probe thermalization hadronization: chiral symmetry restoration confinement statistical coalescence J/  enhancement / suppression Q2Q2 time

40 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 40/62 Limitations in PDFs  Most charm created from gluons, e.g. g+g  c + cbar  increasing uncertainties in gluon distribution at smaller Bjorken x:  Assume y=0, p T =0, x 1 =x 2  2 x m charm  3 GeV RHIC (  s=0.2TeV): x = 0.015 LHC (  s=14TeV): x = 2x10 -4

41 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 41/62 Heavy  Quark Production (i) Heavy-quarks abundantly produced at LHC energies ! (ii) Large theoretical uncertainties  energy scan (LHC,FAIR) will help ! Plots: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008). Heavy-quark production at LHC, compared to RHIC expect factors Charm  10 Beauty  100

42 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 42/62 Heavy  quark Correlations  c-cbar mesons are correlated Pair creation: back to back Gluon splitting: forward Flavor excitation: flat  Exhibits strong correlations !  Baseline at zero: clear measure of vanishing correlations !  probe thermalization among partons ! PYTHIA: p + p @ 14 TeV X. Zhu, M. Bleicher, S.L. Huang, K.S., H. Stöcker, N. Xu, and P. Zhuang, PLB 647 (2007) 366. G. Tsildeakis, H. Appelshäuser, K.S., J. Stachel, arXiv: 0908.0427.

43 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 43/62 How to measure Heavy- Quark Production  e.g., D 0, c  = 123  m  displaced decay vertex is signature of heavy-quark decay  need precise pointing to collision vertex

44 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 44/62 Heavy  Flavor production at RHIC  large discrepancy between STAR and PHENIX: factor > 2 (!)  need Si-vertex upgrades (> 2011)  large theoretical uncertainties (factor > 10)  Measure charm production at RHIC, LHC, FAIR and provide input to theory: - gluon distribution, - scales  R,  F Plot: J. Dunlop (STAR), QM2009, Open Heavy-flavor in heavy-ion collisions, Calcs: R. Vogt,Eur. Phys. J. C, s10052-008-0809-x (2008), M. Cacciari, 417th Heraeus Seminar, Bad Honnef (2008).

45 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 45/62 Where does all the charm go? D0D0 DD DsDs cc J   Total charm cross section: open charm hadrons, e.g. D 0, D *,  c, … or c,b  e(  ) + X  Hidden-charm mesons, e.g. J/  carry ~ 1 % of total charm Statistics plot: H. Yang and Y. Wang, U Heidelberg.

46 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 46/62 Plot: A. Shabetai D 0   + + K - Reconstruction D 0, c  = 123  m ++ K-K-

47 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 47/62  Measure secondary decay vertex  Direct reconstruction of D 0  address heavy-quark production with 1 st year of data taking  Many other channels, e.g. D +, D*  Also: single-electrons from heavy-flavor decays Open  Charm Performance ALICE: PPR.vol.II, J. Phys. G 32 (2006) 1295. Simulation: 10 9 p+p, 10 8 p+Pb, 10 7 Pb+Pb collisions

48 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 48/62 D*  meson Identification D* ± analysis: Yifei Wang, Ph.D. thesis, University of Heidelberg, in preparation.  D* +  D 0 +  +  Identify D* + through  M[D* + - D 0 ]  Subtract resonance decay to D 0  Two different methods to address total charm production

49 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 49/62 Viele neue interessante Signale in ALICE bei LHC: z.B. Hadronen mit schweren Quarks (charm und beauty) D 0, D +, D *, D s, J/  ’,  c   b  

50 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda Quarkonia

51 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 51/62 Charmonium  Bound state of charm- and anti-charm quark  Hidden-charm meson  m J/  = 3.1 GeV, r J/  = 0.45 fm, m J/  ' = 3.6 GeV, J P = 1 - states  Minimum formation time  = r J/  / c = 0.45 fm  Charm-quark production at time scale t c ~ 1/2m c  0.08 fm  Separation between initial production and hadronization (factorization)

52 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 52/62 Debye Screening

53 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 53/62 Quarkonia as a Thermometer  Check for melting of bottomonium (b-bbar) at T deconfined  2 T c  Check for melting of charmonium (c-cbar) at T deconfined  1.2 T c  Absolute numbers model-dependent T fo :

54 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 54/62 J/  Production  suppression, compared to scaled p+p  regeneration, enhancement Low energy (SPS):few ccbar quarks in the system  suppression of J/  High energy (LHC): many ccbar pairs in the system  enhancement of J/   Signal of de-confinement + thermalization of light quarks ! (SPS) P. Braun-Munzinger and J. Stachel, Nature 448 (2007) 302.

55 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 55/62 Statistical Hadronization of Charm  large charm production at LHC  strong generation of J/   striking centrality dependence  Signature for QGP formation !  Initial conditions at LHC ?  Need to measure total charm production in PbPb !  Assumes kinetic equilbration of charm !  cc A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys. Lett. B 652 (2007) 259.

56 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 56/62 Charmonium production  In central Pb+Pb collisions at top SPS energy:  J/  ’ to J/  ratio approaches thermal limit  Indicates kinetic equilibration of charm

57 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 57/62  Examples of the ALICE physics potential - Open charm: D 0  K - +  + (already shown) - Quarkonia: J/ ,  - Global event properties  Will be addressed in first year of pp collisions

58 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 58/62 First Physics with ALICE  Results from simulations  1 day of data taking  Address: - multiplicity - mean transverse momentum - hadro-chemistry

59 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 59/62 Charmonia via Di-Electron Measurement electron ID with TPC and TRD expect 2500  mesons per Pb+Pb year with good mass resolution and S/B Simulation: 2·10 8 central PbPb collisions J/   c1  c2 Simulation: pp coll.

60 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 60/62 Heavy Flavor in Muon Channel muon channel: J/ ,    +  - (2.5 <  < 4) 60000 J/  and 2000  initial sample sufficient to study production rates of J/  and  states in muon channel J/    b   b  

61 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 61/62 LHC: Schedule Nov 2009: 1 st pp collisions very short run at 900 GeV Long run of pp collisions at 7- 10 TeV end of 2010:3 - 4 weeks Pb+Pb collisions at 2.8 - 3.9 TeV *short technical stop over Christmas period

62 XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 62/62 ALICE  Ready for Physics !


Download ppt "XXIII Graduate Days, Heidelberg, 5  9 Oct, 2009 Kai Schweda 1/62 Bulk Properties of QCD Matter Kai Schweda, University of Heidelberg / GSI Darmstadt Many."

Similar presentations


Ads by Google