Presentation is loading. Please wait.

Presentation is loading. Please wait.

Title Page Photo “You will die but the carbon will not; its career does not end with you. It will return to the soil, and there a plant may take it up.

Similar presentations

Presentation on theme: "Title Page Photo “You will die but the carbon will not; its career does not end with you. It will return to the soil, and there a plant may take it up."— Presentation transcript:

1 Title Page Photo “You will die but the carbon will not; its career does not end with you. It will return to the soil, and there a plant may take it up again in time, sending it once more on a cycle of plant and animal life.” —Jacob Bronowski (

2 v The Geographical Approach to the Study of Organisms v Biogeochemical Cycles v Food Chains v Natural Distributions v Environmental Relationships Cycles and Patterns in the Biosphere

3 Of the 4 components of our physical environment, the biosphere is the most difficult to “pin down” (because you find it in all spheres). But it is still an integral part of the landscape. Atmosphere (climate’s domain) Lithosphere: Land surface Hydrosphere: Ocean, freshwater, & ice Biosphere: Plants & Animals

4  The Geographical Approach to the Study of Organisms Geographical Viewpoint –Seeks to explain distributions of phenomena and how their spatial patterns change over time Biogeography –So then, this is the study of plant and animal distributions and how their spatial patterns change over time –Also, “Biota” means plant & animal life –Flora (plants) –Fauna (animals)

5  Biogeochemical Cycles -This are the pathways of flow of the various cycles that keep things alive in in our planet (see list below). -They flow through biological, geographical and chemical pathways. The Flow of Energy The Hydrologic Cycle The Carbon Cycle The Oxygen Cycle The Nitrogen Cycle Those are the 5 main ones, but there are also minor ones.

6  Biogeochemical Cycles The Flow of Energy: The sun is the primary energy source for all living organisms, except for those animals that depend on geothermal vents in ocean depths (e.g. tube-like creatures). The sun starts the process/ flow of energy by photosynthesis. Photosynthesis is the production of organic matter by chlorophyll- containing plants, bacteria, algae. Only 0.1% of the solar energy entering the earth is used in photosynthesis!

7 CO 2 + H 2 O carbohydrates + O 2 light –Photosynthesis Carbohydrates + O 2 CO 2 + H 2 O + energy (heat) –Respiration Photosynthesis and Respiration:

8 –Net Primary Productivity Net primary productivity is the net photosynthesis of a plant community over a period of one year. Net photosynthesis is the difference between photosynthesis and respiration. In other words, net photosynthesis is the difference between the amount of carbohydrates produced in photosynthesis and the amt lost in plant respiration (i.e. gain/loss kg carbon-yr).

9 –Net Primary Productivity How that energy is recycled (caption, pg 292) Compare oceans to deserts (see color scheme on caption, pg 293). –Fig. 10-3

10 Hydrologic Cycle –H 2 O is the most abundant substance of biosphere –Two locations of water In residence in plant and animal tissues (i.e. in the biosphere, see table below, pg 293) And in transit in the Hydrologic Cycle (next slide)

11 –Two locations (continued) In transit from one sphere to another, i.e., in the hydrologic cycle. Also see Chapters 9 and 6 (pg 145-146). Use drawing made during class for test. Atmosphere BiosphereLithosphere Hydrosphere

12 Carbon Cycle –Photosynthesis “pulls” atmospheric carbon into the biosphere; that’s why scientists encourage the planting of trees. –All living things contain carbon; it’s a basic building block. Including a lot of inanimate objects – e.g. plastics, etc. (As you find in advanced chemistry).

13 –Carbon moves constantly from the living system to organic reservoirs and back. –The carbon cycle in the terrestrial realm is the same as in the oceans -- plankton use CO2 and marine animals (e.g. fish) release it during respiration.

14 Oxygen Cycle –The atmosphere contains 21% Oxygen. See pg 56 (Fig 3-3). –O 2 is mainly a byproduct of photosynthesis: remember formula of photosynthesis. –Other sources...e.g. ozone, etc (see pg 295).

15 –Fig. 10-8 Nitrogen Cycle –N 2 – Atmospheric nitrogen (78% of air); also pg 56. Other Mineral Cycles (don’t study for test) –These include other impt trace minerals (e.g., phosphorous, sulfur, and calcium)

16 –Nitrogen fixation (see caption, pg 296). This is when plants/organisms (e.g. bacteria, soybeans) convert N 2 into a form that plants can use (i.e. nitrates). –Denitrification on the other hand, is the opposite. This is when nitrates are converted back into atmospheric N 2 (mainly by certain bacteria in the soil). Nitrogen Cycle:

17  Food Chains Pathways of energy, water, and nutrients on which organisms depend for their survival. –Fig. 10-9. A simple food chain.

18 Fundamental Units of a Food Chain Plants are Autotrophs i.e. producers (Self-feeders that fix carbon – storing solar energy) Primary Consumers Herbivores (plant-eaters) Secondary Consumers Carnivores (meat-eaters) Animals are Heterotrophs (Consumers) What are Vegans, Vegetarians and Omnivores?

19 Food Pyramid (pg 298) -- Each step in the food chain / pyramid is called a “trophic level”. -- It’s more efficient to feed people with grain, than with animals fed with grain. Read more in text. -- In other words, vegetarians are more efficient than carnivores. –Fig. 10-10 Many primary consumers Few Secondary Consumers — Decrease in number of consumers —

20 Pollutants in the Food Chain –Biological amplification, also called Biomagnification. –E.g. persistent chemicals like DDT stay in the fatty tissues of animals and never break down. And actually INCREASE in amount & toxicity UP the food chain. –Fig. 10-10

21 4 determinants: Evolutionary development Migration/dispersal Reproductive success Extinction  Natural Distributions

22 Evolutionary Development –Darwinian theory of natural selection –Influence of Plate Tectonics Acacia species – widespread distribution before the Pangaea break-up –Fig. 10-12. Acacias are widespread in tropics today.

23 Eucalyptus – Did not exist on Pangaea. –Fig. 10-13. According to scientists, Eucalyptus species developed in geographical isolation in Australia, after the Pangaea break-up. So did Kangaroos and Koalas.

24 Migration/Dispersal –Plants disperse seeds via wind, water, and animals (including human transport). Example: Coconuts Part of the reason why the Immigration Service does not allow LIVE plants/ seeds / animals into the U.S. (especially undeclared and strange species) –Fig. 10-14  Natural Distributions

25 –Animals migrate via legs, wings, fins, etc. Example: Cattle egrets; see map of extent, pg 303. –Fig. 10-15

26 Reproductive Success –Reproductive success is influenced by changes in the environment, caused either by nature or by predators. Example: when fringes of the Arctic warms up and the range of cod fish expands but polar bears perish from drowning (so the changes are good for one, but not for the other). American bison in natural environment, without human interference.  Natural Distributions

27 Extinction –Plant succession. This is when one type of vegetation is replaced by another, naturally. Example: Infilling of a small lake. Here, certain plants are being replaced by other types of plants. –But is it not a true form of “extinction”, because extinction is permanent. It only becomes extinction if certain species (plants, animals) fail to reappear when the conditions are right again. It’s not extinction even if they reappear in another environment/ location. –Humans are a great cause of extinction by the destruction of natural habitats e.g. excessive hunting, deforestation, etc. or just sheer killing as in the case of the American Buffalo.  Natural Distributions

28 A limiting factor a variable that is the most important in determining the survival of an organism. The Influence of Climate the strongest limiting factor. And under climate we have: -- Light -- Moisture -- Temperature -- Wind Environmental Relationships and Limiting Factors

29 The Influence of Climate –Light Plant shape – in lots of light, trees are broad & short; in inadequate light, trees are tall & narrow. Why? Photoperiodism – amt of light received during a 24-hr period. E.g. Fall & Winter. Organisms are sensitive to this; it determines the dropping of leaves and hibernation. –Fig. 10-18. Effect of light on tree shape.

30 –Moisture Effect of moisture supply on plant adaptations (in both deserts and rainforests). The leaves are broad in rainforests, and little/tiny in deserts. Why? –Temperature In hot climates, some plant leaves are shiny to reflect the sun. Plants are less tolerant to cold than animals (they have no fur, blubber, and can’t move). You find animals beyond the tree-line. E.g. polar bears, penguins. Plants actually do better in extreme heat (e.g. cacti) than in extreme cold. Also, see pictures of Joshua Trees (Grand Canyon).

31 –Wind Animal body heat loss Plants –Desiccation (drying) –Wind shear –Fig. 10-20. Desiccation and wind-shear effect on trees in a timberline zone. See caption, pg 306.

32 Edaphic (soil) influences Topographic influences –Steepness of slopes –Orientation of slopes in regards to sunlight –Porosity of soil on slopes Wildfire impacts – not always negative (see pg 308, last paragraph) –Fig. 10-21 Other Influences Besides Climate

33 Environmental Correlations: Example of Selva –“Selva” means tropical rainforest –Explain distribution on pg 308, Fig. 10-22 –Climate – Af –Flora – Tropical rainforest –Fauna – Flyers, crawlers, creepers, and climbers –Soil – Laterization –Fig. 10-23. Tropical rainforest scene in Ecuador.

Download ppt "Title Page Photo “You will die but the carbon will not; its career does not end with you. It will return to the soil, and there a plant may take it up."

Similar presentations

Ads by Google