Presentation is loading. Please wait.

Presentation is loading. Please wait.

HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Melbourne 2008 Philip Lah.

Similar presentations


Presentation on theme: "HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Melbourne 2008 Philip Lah."— Presentation transcript:

1 HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Melbourne 2008 Philip Lah

2 Collaborators: Michael Pracy (ANU) Frank Briggs (ANU) Jayaram Chengalur (NCRA) Matthew Colless (AAO) Roberto De Propris (CTIO)

3 Talk Outline Introduction Evolution in clusters & star formation rate density vs z HI 21cm emission & the HI coadding technique Current Observations with the HI coadding technique HI in star forming galaxies at z = 0.24 HI in Abell 370, a galaxy cluster at z = 0.37 Future Observations with SKA pathfinders using ASKAP and WiggleZ using MeerKAT and zCOSMOS

4 Evolution in Galaxy Clusters

5 Galaxy Cluster: Coma

6 Butcher-Oemler Effect

7 The Cosmic Star Formation Rate Density

8 SFRD vs z Hopkins 2004

9 SFRD vs time Hopkins 2004

10 HI Gas and Star Formation Neutral atomic hydrogen gas cloud (HI) molecular gas cloud (H 2 ) star formation

11 The Cosmic Neutral Gas Density

12 The Cosmic Gas Density vs. Redshift Zwaan et al. 2005 HIPASS HI 21cm Rao et al. 2006 DLAs from MgII absorption Prochaska et al. 2005 DLAs

13 The Cosmic Gas Density vs. Redshift Zwaan et al. 2005 HIPASS HI 21cm Rao et al. 2006 DLAs from MgII absorption Prochaska et al. 2005 DLAs

14 HI 21 cm Emission

15 Neutral atomic hydrogen creates 21 cm radiation proton electron

16 Neutral atomic hydrogen creates 21 cm radiation

17

18

19 photon

20 Neutral atomic hydrogen creates 21 cm radiation

21 HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  10 14 s) 1 M   2.0  10 33 g  1.2  10 57 atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to 10 10 M  HI emission ~4  10 49 to 4  10 52 photons per second HI 21 cm luminosity of ~4  10 33 to 4  10 36 ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  10 39 to 3  10 42 ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

22 HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  10 14 s) 1 M   2.0  10 33 g  1.2  10 57 atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to 10 10 M  HI emission ~4  10 49 to 4  10 52 photons per second HI 21 cm luminosity of ~4  10 33 to 4  10 36 ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  10 39 to 3  10 42 ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

23 HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  10 14 s) 1 M   2.0  10 33 g  1.2  10 57 atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to 10 10 M  HI emission ~4  10 49 to 4  10 52 photons per second HI 21 cm luminosity of ~4  10 33 to 4  10 36 ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  10 39 to 3  10 42 ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

24 HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  10 14 s) 1 M   2.0  10 33 g  1.2  10 57 atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to 10 10 M  HI emission ~4  10 49 to 4  10 52 photons per second HI 21 cm luminosity of ~4  10 33 to 4  10 36 ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  10 39 to 3  10 42 ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

25 HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  10 14 s) 1 M   2.0  10 33 g  1.2  10 57 atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to 10 10 M  HI emission ~4  10 49 to 4  10 52 photons per second HI 21 cm luminosity of ~4  10 33 to 4  10 36 ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  10 39 to 3  10 42 ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

26 HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  10 14 s) 1 M   2.0  10 33 g  1.2  10 57 atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to 10 10 M  HI emission ~4  10 49 to 4  10 52 photons per second HI 21 cm luminosity of ~4  10 33 to 4  10 36 ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  10 39 to 3  10 42 ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

27 HI 21cm emission HI 21 cm emission decay half life ~10 million years (3  10 14 s) 1 M   2.0  10 33 g  1.2  10 57 atoms of hydrogen atoms total HI gas in galaxies ~ 10 7 to 10 10 M  HI emission ~4  10 49 to 4  10 52 photons per second HI 21 cm luminosity of ~4  10 33 to 4  10 36 ergs s -1 For comparison, in star forming galaxies: luminosity of H  emission ~3  10 39 to 3  10 42 ergs s -1 HI 21 cm emission ~10 6 times less power than H  emission

28 HI 21cm Emission at High Redshift

29 HI 21cm emission at z > 0.1 single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z = 0.1887  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = 0.188 and z = 0.206  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  10 10 M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  10 10 M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

30 HI 21cm emission at z > 0.1 single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z = 0.1887  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = 0.188 and z = 0.206  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  10 10 M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  10 10 M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

31 HI 21cm emission at z > 0.1 single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z = 0.1887  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = 0.188 and z = 0.206  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  10 10 M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  10 10 M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

32 HI 21cm emission at z > 0.1 single galaxy at z = 0.176  WSRT 200 hours (Zwaan et al. 2001, Science, 293, 1800) single galaxy at z = 0.1887  VLA ~80 hours (Verheijen et al. 2004,in IAU Symposium Vol 195, p. 394) two galaxy clusters at z = 0.188 and z = 0.206  WSRT 420 hours  42 galaxies detected  HI gas masses 5  10 9 to 4  10 10 M  (Verheijen et al. 2007, ApJL, 668, L9) galaxies with redshifts z = 0.17 to 0.25 observed with Arecibo  detected 26 from 33 observed  HI gas masses (2 to 6)  10 10 M  (Catinella et al. 2007, in IAU Symposium Vol 235, p. 39)

33 Coadding HI signals

34 RA DEC Radio Data Cube Frequency HI redshift

35 Coadding HI signals RA DEC Radio Data Cube Frequency HI redshift positions of optical galaxies

36 Coadding HI signals frequency flux

37 Coadding HI signals frequency flux z2 z1 z3

38 Coadding HI signals frequency flux z2 z1 z3 velocity HI signal

39 Current Observations - HI coadding

40 Giant Metrewave Radio Telescope

41

42

43 Anglo-Australian Telescope

44 multi-object, fibre fed spectrograph 2dF/AAOmega instrument

45 The Fujita galaxies H  emission galaxies at z = 0.24

46 The Subaru Telescope

47 The Surprime-cam filters H  at z = 0.24

48 Narrowband Filter: Hα detection

49 The Fujita Galaxies Subaru Field 24’ × 30’ narrow band imaging  Hα emission at z = 0.24 (Fujita et al. 2003, ApJL, 586, L115) 348 Fujita galaxies 121 redshifts using AAT GMRT ~48 hours on field DEC RA

50 SFRD vs z - Fujita Hopkins 2004 Fujita et al. 2003

51 Fujita galaxies - B filter Thumbnails 10’’ sq Ordered by H  luminosity

52 Fujita galaxies - B filter Thumbnails 10’’ sq Ordered by H  luminosity

53 Coadded HI Spectrum

54 HI spectrum all Fujita galaxies neutral hydrogen gas measurement using 121 redshifts - weighted average M HI = (2.26 ± 0.90) ×10 9 M  raw binned

55 The Cosmic Neutral Gas Density

56 my new point The Cosmic Gas Density vs. Redshift

57 my new point Cosmic Neutral Gas Density vs. Time

58 Galaxy HI mass vs Star Formation Rate

59 Galaxy HI Mass vs Star Formation Rate HIPASS & IRAS data z ~ 0 Doyle & Drinkwater 2006

60 HI Mass vs Star Formation Rate at z = 0.24 line from Doyle & Drinkwater 2006 all 121 galaxies

61 HI Mass vs Star Formation Rate at z = 0.24 line from Doyle & Drinkwater 2006 42 bright L(Hα) galaxies 42 medium L(Hα) galaxies 37 faint L(Hα) galaxies

62 Abell 370 a galaxy cluster at z = 0.37

63 Abell 370, a galaxy cluster at z = 0.37 large galaxy cluster of order same size as Coma optical imaging ANU 40 inch telescope spectroscopic follow- up with the AAT GMRT ~34 hours on cluster

64 Abell 370 – R band images Thumbnails 10’’ sq 324 galaxies with useful redshifts (z~0.37) Ordered by observed R band magnitudes

65 Abell 370 galaxy cluster 324 galaxies 105 blue (B-V  0.57) 219 red (B-V > 0.57) Abell 370 galaxy cluster

66 3σ extent of X-ray gas R 200  radius at which cluster 200 times denser than the general field

67 Galaxy Sizes I want galaxies to be unresolved. For the Fujita galaxies I used an estimate of the HI size from the optical properties of spiral and irregular field galaxies and the smoothed radio data. Major Complication!! The Abell 370 galaxies are a mixture of early and late types in a variety of environments.

68 Galaxy Sizes I want galaxies to be unresolved. For the Fujita galaxies I used an estimate of the HI size from the optical properties of spiral and irregular field galaxies and the smoothed radio data. Major Complication!! The Abell 370 galaxies are a mixture of early and late types in a variety of environments.

69 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

70 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

71 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

72 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

73 HI mass 324 galaxies 219 galaxies 105 galaxies 94 galaxies 168 galaxies 156 galaxies 104 galaxies 220 galaxies

74 HI all spectrum all Abell 370 galaxies neutral hydrogen gas measurement using 324 redshifts – large smoothing M HI = (6.6 ± 3.5) ×10 9 M 

75 HI Flux – All Galaxies

76 HI blue outside x-ray gas blue galaxies outside of x-ray gas measurement of neutral hydrogen gas content using 94 redshifts – large smoothing M HI = (23.0 ± 7.7) ×10 9 M 

77 HI Flux – Blue Galaxies Outside X-ray Gas

78 Comparisons with the Literature

79 Average HI Mass Comparisons with Coma

80 Abell 370 and Coma Comparison 220 galaxies 324 galaxies 104 galaxies

81 Abell 370 and Coma Comparison 220 galaxies 324 galaxies 104 galaxies

82 Abell 370 and Coma Comparison 220 galaxies 324 galaxies 104 galaxies

83 HI Density Comparisons

84 HI density field

85

86

87

88 HI density - inner regions of clusters within 2.5 Mpc of cluster centers

89 HI Mass to Light Ratios

90 HI mass to optical B band luminosity for Abell 370 galaxies Uppsala General Catalog Local Super Cluster (Roberts & Haynes 1994)

91 HI Mass to Light Ratios HI mass to optical B band luminosity for Abell 370 galaxies Uppsala General Catalog Local Super Cluster (Roberts & Haynes 1994)

92 Galaxy HI mass vs Star Formation Rate

93 Galaxy HI Mass vs Star Formation Rate HIPASS & IRAS data z ~ 0 Doyle & Drinkwater 2006

94 HI Mass vs Star Formation Rate in Abell 370 all 168 [OII] emission galaxies line from Doyle & Drinkwater 2006

95 HI Mass vs Star Formation Rate in Abell 370 84 blue [OII] emission galaxies line from Doyle & Drinkwater 2006 92 red [OII] emission galaxies

96 Future Observations - HI coadding

97 ASKAP

98 MeerKAT South African SKA pathfinder

99 ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – 10000 MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg 2 1.2 deg 2 4.8 deg 2 Maximum Baseline Length 8 km10 km

100 ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – 10000 MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg 2 1.2 deg 2 4.8 deg 2 Maximum Baseline Length 8 km10 km

101 ASKAP and MeerKAT parameters ASKAPMeerKAT Number of Dishes 4580 Dish Diameter 12 m Aperture Efficiency 0.8 System Temp. 35 K30 K Frequency range 700 – 1800 MHz700 – 10000 MHz Instantaneous bandwidth 300 MHz512 MHz Field of View: at 1420 MHz (z = 0) at 700 MHz (z = 1) 30 deg 2 1.2 deg 2 4.8 deg 2 Maximum Baseline Length 8 km10 km z = 0.4 to 1.0 in a single observation z = 0.2 to 1.0 in a single observation

102 HI detections ASKAP 100 hr

103 HI detections ASKAP 1000 hr

104 HI detections MeerKAT 100 hr

105 HI detections MeerKAT 1000 hr

106 What I could do with the SKA pathfinders using optical coadding of HI if you gave them to me TODAY.

107 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

108 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

109 WiggleZ and zCOSMOS WiggleZzCOSMOS Instrument/TelescopeAAOmega on the AATVIMOS on the VLT Target Selection ultraviolet using the GALEX satellite optical I band I AB < 22.5 Survey Area 1000 deg 2 total 7 fields minimum size of ~100 deg 2 COSMOS field single field ~2 deg 2 Primary Redshift Range 0.5 < z < 1.00.1 < z < 1.2 Survey Timeline2006 to 20102005 to 2008 n z by survey end176,00020,000 n z in March 2008~62,000~10,000

110 WiggleZ and ASKAP

111 WiggleZ field data as of March 2008 z = 0.1 to 1.0 ASKAP beam size Diameter 6.2 degrees Area 30 deg 2 ~10 degrees across

112 ASKAP & WiggleZ 100hrs n z = 5975

113 ASKAP & WiggleZ 100hrs n z = 5975

114 ASKAP & WiggleZ 100hrs n z = 5975

115 ASKAP & WiggleZ 1000hrs n z = 5975

116 zCOSMOS and MeerKAT

117 zCOSMOS field data as of March 2008 z = 0.1 to 1.0 MeerKAT beam size at 1420 MHz z = 0 MeerKAT beam size at 1000 MHz z = 0.4 ~1.3 degrees across

118 MeerKAT & zCOSMOS 100hrs n z = 7615

119 MeerKAT & zCOSMOS 100hrs n z = 7615

120 MeerKAT & zCOSMOS 100hrs n z = 7615

121 MeerKAT & zCOSMOS 1000hrs n z = 7615

122 Conclusion

123 can use coadding with optical redshifts to make measurement of the HI 21 cm emission from galaxies at redshifts z > 0.1 the measured cosmic neutral gas density at z = 0.24 is consistent with that from damped Lyα galaxy cluster Abell 370 at z = 0.37 has significantly more gas than similar clusters at z ~ 0, possibly as much as 10 times more gas the SKA pathfinders ASKAP and MeerKAT can measure significant amounts of HI 21 cm emission out to z = 1.0 using the coadding technique with existing redshift surveys Conclusion


Download ppt "HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Melbourne 2008 Philip Lah."

Similar presentations


Ads by Google