Presentation is loading. Please wait.

Presentation is loading. Please wait.

The AMoRE Project to search for 0  of 100 Mo using low temperature detectors Yong-Hamb Kim ( 김용함 ) - Center for Underground Physics, IBS - KRISS Joint.

Similar presentations


Presentation on theme: "The AMoRE Project to search for 0  of 100 Mo using low temperature detectors Yong-Hamb Kim ( 김용함 ) - Center for Underground Physics, IBS - KRISS Joint."— Presentation transcript:

1 The AMoRE Project to search for 0  of 100 Mo using low temperature detectors Yong-Hamb Kim ( 김용함 ) - Center for Underground Physics, IBS - KRISS Joint Winter Conference on Particle Physics, String and Cosmology YongPyong-High1 2015

2 2 The AMoRE Project to search for neutrinoless double decay of 100 Mo using cryogenic 40 Ca 100 MoO 4 detectors AMORE: ‘Love’ in Italian AMORE: “A cosmetic company in Korea AMoRE: Advanced Mo-based Rare process Experiment Ø4cmx4cm CaMoO 4 crystal

3 3 YongPyong-High1 2015 AMoRE collaboration Institute for Basic Science, Daejeon, Korea Korea Research Institute of Standards and Science, Daejeon, Korea KyungPook National University, Daegu, Korea Sejong University, Seoul, Korea Seoul National University, Seoul, Korea Ewha Womans University, Seoul, Korea Chung-Ang University, Semyung University, Korea Soongsil University, Korea Institute for Theoretical and Experimental Physics, Moscow, Russia JSC Fomos-Materials, Moscow, Russia Baksan National Observatory, Kabardino-Balkarskaya Republic, Russia Institute for Nuclear Research, Kyiv, Ukraine Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany Tsinghua University, Beijing, China Nakhon Rajabhat University, Thailand Abdul Wali Khan University, Pakistan Institut Teknologi Bandung (ITB), Indonesia 7 counties, 16 institutions, 90 collaborators

4 4 YongPyong-High1 2015 Double beta decay Double Beta Decay with two neutrinos 2νββ proposed by Maria Geoppert- Mayer in 1935. First observed directly in 1987. Why 50 years? T 1/2 (2νββ) : 10 19 ~ 10 21 y Background T 1/2 (U, Th) : 10 10 y

5 5 YongPyong-High1 2015 Neutrinoless double beta decay (0νββ) Double Beta Decay with two neutrinos Double Beta Decay with no neutrino requires massive Majorana ν ! Key test proposed by Racah in 1937 It may answer - Mass of neutrinos ( ) - Majorana ( ), or Dirac particles ( ) - Lepton number conservation

6 6 YongPyong-High1 2015 Experimental Sensitivity of T 1/2 (0  ) DBU: counts/ (keV kg year) Isotopic Abundance Atomic mass Background level (count/keV kg year) Energy Resolution Time Detector Mass Detection Efficiency For “zero” background case; # of background events ~ 0 (1) For sizeable background case; AMoRE10kg AMoRE200kg

7 7 YongPyong-High1 2015 100 Mo is chosen for 0  experiment  100 Mo High Q-value (  ) of 3034.40 (12) keV. High natural abundance of 9.7% Relatively short half life (0  ) expected from theoretical calculation CandidateQ (MeV)Abund. (%) 48 Ca4.2710.19 76 Ge2.0407.8 82 Se2.9958.7 100 Mo3.0349.7 116 Cd2.8027.5 124 Sn2.2285.8 130 Te2.53334.1 136 Xe2.4798.9 150 Nd3.3675.6 Barea et al., Phy. Rev. Lett. 109, 042501 (2012)

8 8 YongPyong-High1 2015 AMoRE detector technology CaMoO 4 - Scintillating crystal - High Debye temperature: T D = 438 K, C ~ (T/T D ) 3 - 48 Ca, 100 Mo 0ν  candidates - AMoRE uses 40 Ca 100 MoO 4 w. enriched 100 Mo and depleted 48 Ca 40 Ca 100 MoO 4 + MMC MMC (Metallic Magnetic Calorimeter) - Magnetic temperature sensor (Au:Er) + SQUID - Sensitive low temperature detector with highest resolution - Wide operating temperature - Relatively fast signals - Adjustable parameters in design and operation stages CaMoO 4 Light sensor MMC phonon sensor Low Temp. Detector Source = Detector

9 9 YongPyong-High1 2015 CaMoO 4 crystal development 12.5 cm 2.2 cm Korea(2003)Ukraine-CARAT(2006) Russia(2006) 30x30x200mm IEEE/TNS 2008

10 10 YongPyong-High1 2015 Temperature dependent scintillation CaMoO4 absolute light yield @RT: 4900  590 ph/MeV (H.J. Kim et al., IEEE TNS 57 (2010) 1475)  Light yield at low temp. : ~ 30,000 ph/MeV  Largest light yield among Mo contained crystals. From RT to 7 K, the light yield increases 6 times (V.B. Mikhailik et al., NIMA 583 (2007) 350)

11 11 YongPyong-High1 2015 100 Mo, 40 Ca enriched materials  Mo-100 isotope production: ECP (Electrochemical plant) Russia URENCO Netherland 100 MoO 3 - Enrichment: 100 Mo = 97% - Impurities ICP-MS measurement: U  0.2 ppb, Th  0.1 ppb HPGe At Baksan: 226 Ra < 2.3 mBq/kg, 228 Ac < 3.8 mBq/kg  Ca-40 isotope production: ELEKTROCHIMPRIBOR, Lesnoy, Russia 40 CaCO 3 - 48 Ca < 0.001% - Impurities: U ≤ 0.1 ppb, Th ≤ 0.1 ppb, Sr = 1 ppm, Ba = 1 ppm 226 Ra = 51 mBq/kg 228 Ac( 228 Th) = 1 mBq/kg

12 12 YongPyong-High1 2015 40 Ca 100 MoO 4 crystals SB28 weight 196 g SB29 weight 390 g S35 weight ~300 g

13 13 YongPyong-High1 2015 4  gamma veto system Internal backgrounds of 40 Ca 100 MoO 4 crystals  decay in 238 U 214 Bi (Q-value : 3.27-MeV) → 214 Po (Q-value : 7.83-MeV)→ 210 Pb  decay in 232 Th 220 Rn (Q-value : 6.41-MeV) → 216 Po (Q-value : 6.91-MeV)→ 212 Pb 214 Po : 1.93-MeV, 2445 events, 1.74mBq/kg 216 Po : 1.62-MeV, 363 events, 0.26mBq/kg 220 Rn : 1.44-MeV 210 Po : 1.13-MeV 214 Bi 216 Po : 1.61-MeV, 57 events, 0.07mBq/kg 214 Po : 1.93-MeV, 63 events, 0.08mBq/kg Crystal S35Crystal SB28 4  CsI(Tl) active setup with Pb shielding at Y2L

14 14 YongPyong-High1 2015 Solid State Detectors Measurement methods Charge, Light, Phonon(Temperature) Thermometer Charge collector Semiconductor Light detector Thermometer Scintillator

15 15 YongPyong-High1 2015 Measurement Chains in LTDs Events Phonon Light Charge CRESST, Rucifer AMoRE, LUMINEU CDMS, EDELWEISS CUORE examples Advantages of using LTDs for rare event search Low threshold & High resolution Active background rejection Charge, Light, Phonon(Temperature)  Low temperature favorable

16 16 YongPyong-High1 2015 Low temperature detectors (Calorimeters) Absorber Thermometer Thermal link Heat sink < 1 K Energy absorption  Temperature Choice of thermometers Thermistors (NTD Ge, doped Si) TES (Transition Edge Sensor) MMC (Metallic Magnetic Calorimeter ) etc.

17 17 YongPyong-High1 2015 Metallic Magnetic Calorimeter (MMC) Magnetic material Au:Er(100~1000ppm) weakly-interacting paramagnetic system metallic host: fast thermalization ( ~ 1  s) g = 6.8 5 mT  Δε = 1.5  eV 1 keV  10 9 spin flips

18 18 YongPyong-High1 2015 Highest resolution detector 1.6 eV FWHM for 6 keV x-rays 0.4keV FWHM for 60keV  1.2keV FWHM Gaussian width for 5.5MeV  Am241 full spectrum MMC with gold foil absorber with C ~ 0.3kg CaMoO 4 Gold foil absorber MMC chip Au:Er

19 19 YongPyong-High1 2015 Phonon sensor for AMoRE Gold film We measure both thermal and athermal phonons. Phonon collector Patterned gold film Gold wires (thermal connection) MMC rise-time: ~ 0.5ms 216 g CaMoO 4

20 20 YongPyong-High1 2015 Photon sensor with MMC MMC chip SQUID sensor Thermal connection Phonon collector (Gold films) Light absorber (Ge wafer) Wafer holder (Cu, heat bath) rise-time: ~ 0.2 ms Temperature independent rise-time !

21 21 YongPyong-High1 2015 Detector Assembly Light detector 2 inch Ge wafer + MMC 196 g 40 Ca 100 MoO 4 (doubly enriched crystal) Phonon collector film on bottom surface Present detector being used in an over-ground lab (KRISS)

22 22 YongPyong-High1 2015 Alpha and electron events PSD Light/Heat ratio Clear separation in PSD and Light/Heat ratios! AMoRE@over-ground - Result summary - AMoRE@over-ground

23 23 YongPyong-High1 2015 Pulse Shape Discrimination (phonon only) AMoRE@over-ground 17.5  separation

24 24 YongPyong-High1 2015 Light/Heat ratios AMoRE@over-ground 8.6  separation CaMoO 4 Ge

25 25 YongPyong-High1 2015 Energy spectrum Energy (keV)51114612615 FWHM (keV)4.35.78.7

26 26 YongPyong-High1 2015 YangYang Pumped Storage Power Plant YangYang(Y2L) Underground Laboratory Minimum depth : 700 m / Access to the lab by car (~2km) (Upper Dam) (Lower Dam) (Power Plant) KIMS (Dark Matter Search) AMoRE (Double Beta Decay Experiment) Seoul Y2L 700m 1000m

27 27 YongPyong-High1 2015 Lab space in Y2L Some more lab space has been made at an unused tunnel KIMS (CsI) Lab. ~ 100m 2 New Lab. Space ~ 1000 m 2

28 28 YongPyong-High1 2015 Low Temperature LAB in Y2L Dec. 2014Jan. 2015

29 29 YongPyong-High1 2015 Summary of the AMoRE project Crystal: 40 Ca 100 MoO 4, doubly enriched scintillating crystals MMC technology for heat and light measurement Temperature: ~20 mK Zero background measurement in ROI Location: Y2L (till Phase I) and a new lab (after) Fully funded for Pilot, Phase I and II. PilotPhase IPhase II Mass1 kg10 kg200 kg Sensitivity(m ee ) (meV)300-90060-18010-30 LocationY2L New Lab Schedule201520162019

30 30 YongPyong-High1 2015 Scheduled AMoRE experiment Each Cell : D=70 mm, H=80 mm. CMO (D=50mm, H=60mm, 506g) 30 layers(2.4 m height)-13 columns or 20 layers(1.6 m height)-19 columns CMO: ~ 300g 5 layers-7 columns 5 CMOs: ~ 1 kg

31 31 YongPyong-High1 2015 AMoRE Sensitivity & Competitiveness AMoRE 10 AMoRE 200 Effective Neutrino mass (eV) Lightest neutrino mass (eV) Toward lower neutrino mass Now AMoRE Pilot

32 32 YongPyong-High1 2015 We need larger space Deeper place? Mt. Daeduk IBS Mt. Jang Mt. Duta Y2L Myungji Hwaak

33 33 YongPyong-High1 2015 SARF(Samcheok Astro-particle Research Facility) A proposal for new underground lab for future projects N S 길이 : 3.7km, 경사도 : ~8% 미로면삼거리 구룡골 해발 180 m 15m 40m 20m 80m 미로면 고천리 대방골 Mt. Duta

34 34 YongPyong-High1 2015 감사합니다


Download ppt "The AMoRE Project to search for 0  of 100 Mo using low temperature detectors Yong-Hamb Kim ( 김용함 ) - Center for Underground Physics, IBS - KRISS Joint."

Similar presentations


Ads by Google