Presentation is loading. Please wait.

Presentation is loading. Please wait.

Viral Pathogenesis Dr. Luka Cicin-Sain Teaching Material:

Similar presentations


Presentation on theme: "Viral Pathogenesis Dr. Luka Cicin-Sain Teaching Material:"— Presentation transcript:

1 Viral Pathogenesis Dr. Luka Cicin-Sain Teaching Material:
Dep. Of Vaccinology, HZI Tel Viral Pathogenesis Teaching Material: Principles of Virology - Molecular Biology, Pathogenesis, and Control of Animal virus SJ Flint, LW Enquist, VR Racaniello & AM Skalka American Society of Microbiology. 2004

2 Virus Pathogenesis Lecture overview
Definition and clinical relevance Determinants of viral pathogenesis Methods and means to study virus pathogenesis Role of clinical studies Experimental methods In vitro In vivo

3 What is a virus? Virus = bad news in a protein / membrane coat
Alberts et al.; 4rd ed. (2002) Molecular Biology of the Cell Poliovirus: 28 nm 5 proteins 1 ss RNA 241 molecules C H N98,245 O P7.500 S2.340 = a chemical ? What is a virus?

4 VIRAL PATHOGENESIS Viral pathogenesis: Virulence: Viral disease:
= process by which a virus causes disease Virulence: = capacity of a virus to cause disease Viral disease: = sum of the effects of (1) the virus replication and direct damage to cells (cytopathogenesis) plus (2) of the immune response on the host (immunopathogenesis)

5 Why study viral pathogenesis?
The study of viral pathogenesis is intellectually engaging and fun Acquire knowledge on the molecular mechanisms by which viruses cause disease to treat and prevent viral disease AIDS, Rabies Hepatitis Influenza, etc…

6 Why were we so nervous about swine flu?
1918: Spanish Flu > Mio. deaths India: ca. 20 Mio USA: ca. 0,5 Mio 6

7 Influenza-related deaths in individuals <65 y during pandemics
younger persons have a 20 fold higher risk of influenza-related mortality during a pandemic, the risk for elderly is high at any time

8 Where do the killer viruses come from?
The pig may act as an intermediate host for the generation of human−avian reassortant influenza viruses with pandemic potential. Observations of humans infected with avian influenza A (H5N1) virus in Hong Kong in 1997 suggest that man himself may act as a 'mixing vessel'.

9 Where do the killer viruses come from?
Reassortment of genomic segments Double infection with avian and human influenza virus needed human virus animal virus New dangerous pathogen

10 Determinants of viral disease: Viral factors AND host factors
Nature of disease: - Strain of virus (virulence) - Target tissue: where virus enters the body ability of virus to gain access to target tissue viral tropism permissivity of cells Severity of disease: - virus: ability of infection to kill cells (cytotoxic effects); quantity of virus inoculated; duration of virus infection; other infections which might affect immune response (HHV8 / HIV) 10

11 Incidence of Kaposi sarcoma and the HIV pandemic
- The Kaposi sarcoma was a very rare tumor - High incidence in HIV-infected, homosexual men - most common tumor in Sub-Saharan Africa

12 Determinants of viral disease: Viral factors AND host factors
Nature of disease: - Strain of virus (virulence) - Target tissue: where virus enters the body ability of virus to gain access to target tissue viral tropism permissivity of cells Severity of disease: - virus: ability of infection to kill cells (cytopathic effects); quantity of virus inoculated; duration of virus infection; other infections which might affect immune response (HHV8 / HIV) - immune system: immunity to virus; intact immune response; immunopathology (Hepatitis B) 12

13 Jaundice due to infection with hepatitis viruses
mainly due to the immune reaction chronic carriers often develop a poor immune response and do not get an icterus

14 Determinants of viral disease: Viral factors AND host factors
Nature of disease: - Strain of virus (virulence) - Target tissue: where virus enters the body ability of virus to gain access to target tissue viral tropism permissivity of cells Severity of disease: - virus: ability of infection to kill cells (cytopathic effects); quantity of virus inoculated; duration of virus infection; other infections which might affect immune response (HHV8 / HIV) - immune system: immunity to virus; intact immune response; immunopathology (Hepatitis B) - more host factors: general health of the host; host nutritional status (Measles!!!) 14

15 Mortality due to Measles
Morbidity (per year): – 600/ Mortality: in industrialized countries: 0,2 – 0,4/ in developing countries: 5 – 25/ 120 (-300) x more !!! Encephalitis: – 0.25% CNS Involvement: > 50 % of the patients have an altered EEG

16 Determinants of viral disease: Viral factors AND host factors
Nature of disease: - Strain of virus (virulence) - Target tissue: where virus enters the body ability of virus to gain access to target tissue viral tropism permissivity of cells Severity of disease: - virus: ability of infection to kill cells (cytopathic effects) quantity of virus inoculated; duration of virus infection; other infections which might affect immune response (HHV8 / HIV) - immune system: immunity to virus; intact immune response; immunopathology (Hepatitis B) - more host factors: general health of the host; host nutritional status (Measles!!!) host genotype (HLA !, susceptibility genes?) age of host (influenza) 16

17 Age-dependend mortality during influenza pendemics
Lederberg 1997 1918 United States

18 Mechanisms of viral pathogenesis
Course of the HIV infection Direct killing of virus infected cells by virus (e.g. HIV) Overreacting immune system (e.g. Hepatitis) Virus induced oncogenesis (e.g. Cervical Cancer in Papilloma infection, Kaposi Sarcoma) 18

19 Study of viral pathogenesis
(How to proceed?) Clinical studies In vitro studies (cytopathogenesis) In vivo studies in animal models (cyto- and immunopathogenesis) non-human primate models mouse models other models

20 Benefits Clinical studies Outstanding clinical relevance
Barré-Sinoussi F. et al. Science. 220, (1983) Outstanding clinical relevance 20

21 Benefits Clinical studies Outstanding clinical relevance
Course of the HIV infection Outstanding clinical relevance Direct information about disease

22 Limitations Clinical studies
Course of the HIV infection Cellular and molecular mechanisms of disease cannot be efficiently studied 22

23 V. C. Lombardi et al., Science 326, 585-589 (2009)
Clinical studies Limitations V. C. Lombardi et al., Science 326, (2009) Cellular and molecular mechanisms of disease cannot be efficiently studied Association does not predict causality 23

24 Koch's postulates Clinical studies Experimental models
Requirements to identify an infectious cause of a disease The microorganism must be found in abundance in all organisms suffering from the disease, but should not be found in healthy hosts. The microorganism must be isolated from a diseased organism and grown in pure culture. The cultured microorganism should cause disease when introduced into a healthy organism. The microorganism must be reisolated from the inoculated, diseased experimental host and identified as being identical to the original specific causative agent.

25 Experimental models – in vitro
Cell death Virus Ag

26 Experimental models – in vitro
Benefits Infection of cells at high frequency (high MOI) In situ study of virus in infected cells Study of virus proteins and their interaction partners Study of substances that block virus replication Study of virus fitness determinants Huang et al. J. Virol 2008 Menard et al. J. Virol 2003

27 Experimental models – in vitro Determinants of fitness
Wild type (wt) virus Deletion (D) Mutant Revertant virus

28 Experimental models – in vitro
Wt/Rev DM36 DM36 M36 rev Active Casp-3 (cell death) 1 2 3 4 5 M36 Rev DM36 wt PFU/ml (log10) Virus Virus + zVAD-fmk (death inhibitor)

29 Experimental models – in vitro
HIV genome

30 Experimental models – in vitro
HIV genome (wt) (Dnef)

31 Negative regulators of virus replication
Experimental models – in vitro Negative regulators of virus replication HIV-1 wt HIV-1 DNef HIV-1 Nef rev. Niderman et al. PNAS 1989

32 Experimental models – in vitro
Limitations It is not possible to study immune pathogenesis It is not possible to study the pathology affecting multiple cell types In vitro results may not reflect in vivo phenomena

33 Experimental models – in vivo
Benefits In vivo veritas It is possible to study the mechanisms by which the immune system controls viruses It is possible to study the pathology affecting multiple cell types in an organ and in situ It is possible to study immune pathogenesis

34 Experimental models – in vivo
Limitations The results may not reflect human disease (e.g. mice infected with HCV will not develop hepatitis) Some viruses are restricted to humans (e.g. Human herpesviruses) These viruses are studied by using homologue viruses that coevolved with the animal host The infection of animals with animal model viruses may not entirely reflect the clinical conditions

35 Comparison of HIV and SIV genomes
Experimental models – in vivo Comparison of HIV and SIV genomes HIV-1

36 Benefits of in vivo assays over in vitro
Experimental models – in vivo Benefits of in vivo assays over in vitro SIV DNef SIV wt HIV-1 wt HIV-1 DNef HIV-1 Nef rev. Niderman et al. PNAS 1989 Binninger et al. J. Virol 1991 Only the in vivo analysis showed that Nef promotes virus replication HIV-1 wt SIV DNef HIV-1 Nef rev.

37 Experimental models – in vivo
Benefits In vivo veritas It is possible to study the mechanisms by which the immune system controls viruses It is possible to study the pathology affecting multiple cell types in an organ and in situ It is possible to study immune pathogenesis

38 Experimental models – in vivo Time kinetics of the immune response
window of opportunity to establish infection ► role back of the (adaptive) immune response

39 Testing the control of virus with immune cells
Experimental models – in vivo Testing the control of virus with immune cells CD8 depleted Control monkeys Since CD8 depletion increases the virus load, CD8 are important for the control of virus replication

40 Experimental models – in vivo
Benefits In vivo veritas It is possible to study the mechanisms by which the immune system controls viruses It is possible to study the pathology affecting multiple cell types in an organ and in situ It is possible to study immune pathogenesis

41 Transgenic & knockout mice for studying viral pathogenesis
Experimental models – in vivo Transgenic & knockout mice for studying viral pathogenesis

42 Advantages of the mouse models
Experimental models – in vivo Advantages of the mouse models Smallest and cheapest mammals Advanced genetic tools are readily available (transgenic and knockout mice) Cell biology tools are readily available (mouse specific monoclonal antibodies, proteins and sequences)

43 Transgenic virus & knockout mice
Experimental models – in vivo Transgenic virus & knockout mice N Adapted from Luker GD et al. J Virol. 2003

44 Experimental models – in vivo
Immune evasion Ability of the virus to evade detection and or antiviral activity by the immune system. Apoptosis Interferons Cytokines and Chemokines Cellular response Natural Killer Cells (innate) Cytolytic T lymphocytes (CTL) Humoral response (antibodies, complement)

45 Human CMV evades control by CD8+ T cells via multiple mechanisms
viral proteins ER proteasome Golgi US3 CMV 1/2 US6 T cell viral proteins TAP MHC I MHC I US11, US2 nucleus

46 Mouse CMV also evades control by CD8+ T cells
viral proteins ER proteasome Golgi m152 CMV 1/2 T cell viral proteins TAP MHC I m152 nucleus

47 MCMV wildtype infected cells are NOT recognized and
lysed by specific T cells (Cr-release assay) Deletion of the virulence factor m152 restores CD8+ T cell lysis

48 How to study the biological significance of viral virulence factors?
Basic rules: Koszinowski´s postulates (KP II) Disabling the gene reduces the fitness of the mutant virus in vivo The ability to replicate in tissue culture is not affected

49 How to study the biological significance of viral virulence factors?
Basic rules: Koszinowski´s postulates (KP II) Disabling the gene reduces the fitness of the mutant virus in vivo The ability to replicate in tissue culture is not affected Reinserting the gene into the mutant virus (generating a "rescuant") restores fitness The fitness of the mutant virus is restored in hosts that are genetically deficient for the target molecule or have been treated to abrogate the target molecule or effector cell (e.g. by antibody depeletion). Fitness is defined by transmission (surrogate: viral titers in organs)

50 Growth capacity of the MCMV m152 mutant
in vitro and in vivo Disabling the virulence gene reduces the fitness of the mutant virus in vivo The ability to replicate in tissue culture is not affected

51 Reduced virulence (attenuation) of the MCMV mutant
in vivo

52 No growth defect of the m152 mutant in mice
lacking MHC molecules or CD8+ T cells mutant wildtype The fitness of the mutant virus is restored in hosts that are genetically deficient for the target molecule or the effector cells

53 No growth defect of the m152 mutant in mice
lacking MHC molecules viral proteins ER proteasome Golgi CMV 1/2 T cell viral proteins TAP MHC I nucleus

54 No growth defect of the m152 mutant in mice
lacking MHC molecules or CD8+ T cells mutant wildtype The fitness of the mutant virus is restored in hosts that are genetically deficient for the target molecule or the effector cells

55 No growth defect of the m152 mutant in mice
lacking CD8+ T cells viral proteins ER proteasome Golgi CMV 1/2 T cell viral proteins TAP MHC I nucleus

56 How to study the biological significance of viral virulence factors?
Basic rules: Koszinowski´s postulates (KP II) Disabling the gene reduces the fitness of the mutant virus in vivo The ability to replicate in tissue culture is not affected Reinserting the gene into the mutant virus (generating a "rescuant") restores fitness The fitness of the mutant virus is restored in hosts that are genetically deficient for the target molecule or have been treated to abrogate the target molecule or effector cell (e.g. by antibody depeletion). Fitness is defined by transmission (surrogate: viral titers in organs)

57 Sometimes mice tell lies !
….but take care What is true for a mouse, may not be true for a human Sometimes mice tell lies !

58 Study of viral pathogenesis (What to study)?
Define cause-effect relationships between infections and pathologies Define mechanisms by which viruses harm target cells Define viral genes that are relevant for the pathogenic process Define pathologies caused by an overreacting immune system 58

59 THANK YOU! Teaching Material: Principles of Virology -
Molecular Biology, Pathogenesis, and Control of Animal virus SJ Flint, LW Enquist, VR Racaniello & AM Skalka American Society of Microbiology. 2004


Download ppt "Viral Pathogenesis Dr. Luka Cicin-Sain Teaching Material:"

Similar presentations


Ads by Google