Presentation is loading. Please wait.

Presentation is loading. Please wait.

Network Programming and Java Sockets

Similar presentations

Presentation on theme: "Network Programming and Java Sockets"— Presentation transcript:

1 Network Programming and Java Sockets
Vijayalakshmi R

2 Agenda Introduction Elements of Client Server Computing
Networking Basics Understanding Ports and Sockets Java Sockets Implementing a Server Implementing a Client Sample Examples Conclusions

3 Introduction Internet and WWW have emerged as global ubiquitous media for communication and changing the way we conduct science, engineering, and commerce. They also changing the way we learn, live, enjoy, communicate, interact, engage, etc. It appears like the modern life activities are getting completely centered around the Internet.

4 Internet Applications Serving Local and Remote Users
PC client Internet Server Local Area Network PDA

5 Internet & Web as a delivery Vehicle

6 Increased demand for Internet applications
To take advantage of opportunities presented by the Internet, businesses are continuously seeking new and innovative ways and means for offering their services via the Internet. This created a huge demand for software designers with skills to create new Internet-enabled applications or migrate existing/legacy applications on the Internet platform. Object-oriented Java technologies—Sockets, threads, RMI, clustering, Web services-- have emerged as leading solutions for creating portable, efficient, and maintainable large and complex Internet applications.

7 Elements of C-S Computing
a client, a server, and network Request Client Server Network Result Client machine Server machine

8 Networking Basics Applications Layer Transport Layer Network Layer
Standard apps HTTP FTP Telnet User apps Transport Layer TCP UDP Programming Interface: Sockets Network Layer IP Link Layer Device drivers TCP/IP Stack Application (http,ftp,telnet,…) Transport (TCP, UDP,..) Network (IP,..) Link (device driver,..)

9 Networking Basics TCP (Transport Control Protocol) is a connection-oriented protocol that provides a reliable flow of data between two computers. Example applications: HTTP FTP Telnet TCP/IP Stack Application (http,ftp,telnet,…) Transport (TCP, UDP,..) Network (IP,..) Link (device driver,..)

10 Networking Basics UDP (User Datagram Protocol) is a protocol that sends independent packets of data, called datagrams, from one computer to another with no guarantees about arrival. Example applications: Clock server Ping TCP/IP Stack Application (http,ftp,telnet,…) Transport (TCP, UDP,..) Network (IP,..) Link (device driver,..)

11 Understanding Ports The TCP and UDP protocols use ports to map incoming data to a particular process running on a computer. server P o r t TCP Client app app app app port port port port TCP or UDP Packet Data port# data

12 Understanding Ports Port is represented by a positive (16-bit) integer value Some ports have been reserved to support common/well known services: ftp 21/tcp telnet 23/tcp smtp 25/tcp login 513/tcp User level process/services generally use port number value >= 1024

13 Sockets Sockets provide an interface for programming networks at the transport layer. Network communication using Sockets is very much similar to performing file I/O In fact, socket handle is treated like file handle. The streams used in file I/O operation are also applicable to socket-based I/O Socket-based communication is programming language independent. That means, a socket program written in Java language can also communicate to a program written in Java or non-Java socket program.

14 Socket Communication A server (program) runs on a specific computer and has a socket that is bound to a specific port. The server waits and listens to the socket for a client to make a connection request. server Connection request port Client

15 Socket Communication If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket bounds to a different port. It needs a new socket (consequently a different port number) so that it can continue to listen to the original socket for connection requests while serving the connected client. server port port Client port Connection

16 Sockets and Java Socket Classes
A socket is an endpoint of a two-way communication link between two programs running on the network. A socket is bound to a port number so that the TCP layer can identify the application that data destined to be sent. Java’s .net package provides two classes: Socket – for implementing a client ServerSocket – for implementing a server

17 Java Sockets ServerSocket(1234) Output/write stream Input/read stream
Client Input/read stream Socket(“ ”, 1234) It can be host_name like “”

18 Socket programming Goal: learn how to build client/server application that communicate using sockets Socket API introduced in BSD4.1 UNIX, 1981 explicitly created, used, released by apps client/server paradigm two types of transport service via socket API: unreliable datagram reliable, byte stream-oriented a host-local, application-created, OS-controlled interface (a “door”) into which application process can both send and receive messages to/from another application process socket

19 Socket-programming using TCP
Socket: a door between application process and end-end-transport protocol (UCP or TCP) TCP service: reliable transfer of bytes from one process to another controlled by application developer controlled by application developer process TCP with buffers, variables socket process TCP with buffers, variables socket controlled by operating system controlled by operating system internet host or server host or server

20 Socket programming with TCP
Client must contact server server process must first be running server must have created socket (door) that welcomes client’s contact Client contacts server by: creating client-local TCP socket specifying IP address, port number of server process When client creates socket: client TCP establishes connection to server TCP When contacted by client, server TCP creates new socket for server process to communicate with client allows server to talk with multiple clients source port numbers used to distinguish clients (more in Chap 3) TCP provides reliable, in-order transfer of bytes (“pipe”) between client and server application viewpoint

21 Client/server socket interaction: TCP
Server (running on hostid) Client create socket, port=x, for incoming request: welcomeSocket = ServerSocket() TCP connection setup close connectionSocket read reply from clientSocket create socket, connect to hostid, port=x clientSocket = Socket() wait for incoming connection request connectionSocket = welcomeSocket.accept() send request using clientSocket read request from connectionSocket write reply to

22 Stream jargon A stream is a sequence of characters that flow into or out of a process. An input stream is attached to some input source for the process, e.g., keyboard or socket. An output stream is attached to an output source, e.g., monitor or socket. Client process client TCP socket

23 Socket programming with TCP
Example client-server app: 1) client reads line from standard input (inFromUser stream) , sends to server via socket (outToServer stream) 2) server reads line from socket 3) server converts line to uppercase, sends back to client 4) client reads, prints modified line from socket (inFromServer stream)

24 Example: Java client (TCP)
import*; import*; class TCPClient { public static void main(String argv[]) throws Exception { String sentence; String modifiedSentence; BufferedReader inFromUser = new BufferedReader(new InputStreamReader(; Socket clientSocket = new Socket("hostname", 6789); DataOutputStream outToServer = new DataOutputStream(clientSocket.getOutputStream()); Create input stream Create client socket, connect to server Create output stream attached to socket

25 Example: Java client (TCP), cont.
Create input stream attached to socket BufferedReader inFromServer = new BufferedReader(new InputStreamReader(clientSocket.getInputStream())); sentence = inFromUser.readLine(); outToServer.writeBytes(sentence + '\n'); modifiedSentence = inFromServer.readLine(); System.out.println("FROM SERVER: " + modifiedSentence); clientSocket.close(); } Send line to server Read line from server

26 Example: Java server (TCP)
import*; import*; class TCPServer { public static void main(String argv[]) throws Exception { String clientSentence; String capitalizedSentence; ServerSocket welcomeSocket = new ServerSocket(6789); while(true) { Socket connectionSocket = welcomeSocket.accept(); BufferedReader inFromClient = new BufferedReader(new InputStreamReader(connectionSocket.getInputStream())); Create welcoming socket at port 6789 Wait, on welcoming socket for contact by client Create input stream, attached to socket

27 Example: Java server (TCP), cont
DataOutputStream outToClient = new DataOutputStream(connectionSocket.getOutputStream()); clientSentence = inFromClient.readLine(); capitalizedSentence = clientSentence.toUpperCase() + '\n'; outToClient.writeBytes(capitalizedSentence); } Create output stream, attached to socket Read in line from socket Write out line to socket End of while loop, loop back and wait for another client connection

28 Socket programming with UDP
UDP: no “connection” between client and server no handshaking sender explicitly attaches IP address and port of destination to each packet server must extract IP address, port of sender from received packet UDP: transmitted data may be received out of order, or lost application viewpoint UDP provides unreliable transfer of groups of bytes (“datagrams”) between client and server

29 Client/server socket interaction: UDP
Server (running on hostid) create socket, clientSocket = DatagramSocket() Client Create, address (hostid, port=x, send datagram request using clientSocket create socket, port=x, for incoming request: serverSocket = DatagramSocket() read request from serverSocket close clientSocket read reply from clientSocket write reply to serverSocket specifying client host address, port number

30 Example: Java client (UDP)
process Input: receives packet (recall thatTCP received “byte stream”) Output: sends packet (recall that TCP sent “byte stream”) client UDP socket

31 Example: Java client (UDP)
import*; import*; class UDPClient { public static void main(String args[]) throws Exception { BufferedReader inFromUser = new BufferedReader(new InputStreamReader(; DatagramSocket clientSocket = new DatagramSocket(); InetAddress IPAddress = InetAddress.getByName("hostname"); byte[] sendData = new byte[1024]; byte[] receiveData = new byte[1024]; String sentence = inFromUser.readLine(); sendData = sentence.getBytes(); Create input stream Create client socket Translate hostname to IP address using DNS

32 Example: Java client (UDP), cont.
Create datagram with data-to-send, length, IP addr, port DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, 9876); clientSocket.send(sendPacket); DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); clientSocket.receive(receivePacket); String modifiedSentence = new String(receivePacket.getData()); System.out.println("FROM SERVER:" + modifiedSentence); clientSocket.close(); } Send datagram to server Read datagram from server

33 Example: Java server (UDP)
import*; import*; class UDPServer { public static void main(String args[]) throws Exception { DatagramSocket serverSocket = new DatagramSocket(9876); byte[] receiveData = new byte[1024]; byte[] sendData = new byte[1024]; while(true) DatagramPacket receivePacket = new DatagramPacket(receiveData, receiveData.length); serverSocket.receive(receivePacket); Create datagram socket at port 9876 Create space for received datagram Receive datagram

34 Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData()); InetAddress IPAddress = receivePacket.getAddress(); int port = receivePacket.getPort(); String capitalizedSentence = sentence.toUpperCase(); sendData = capitalizedSentence.getBytes(); DatagramPacket sendPacket = new DatagramPacket(sendData, sendData.length, IPAddress, port); serverSocket.send(sendPacket); } Get IP addr port #, of sender Create datagram to send to client Write out datagram to socket End of while loop, loop back and wait for another datagram

Download ppt "Network Programming and Java Sockets"

Similar presentations

Ads by Google