Presentation is loading. Please wait.

Presentation is loading. Please wait.

Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel,

Similar presentations


Presentation on theme: "Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel,"— Presentation transcript:

1 Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 1 abcd Switzerland Ltd., Baden, Switzerland 2 Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 3 Laboratoire de Photophysique Moleculaire, Universite Paris-Sud, Orsay, France 4 Sydney University, Sydney, Australia Bunsentagung, Dresden 2004 Gas phase electronic spectra of linear carbon chains: HC n+1 H, HC n H, HC n+1, HC n

2 hypothetical new allotrope diamond: sp3 graphite: sp2 “polyyne”: sp hypothetical new allotrope molecular wire precursor nano tubes, fullerenes etc. interstellar molecules optical properties: transition n-> ∞∞ band gap bulk behaviour optical properties: band gaps absorption in the ISM ->spectroscopy Nanowires

3 taken from: http://cfa-www.harvard.edu/cfa/mmw/mmwlab/ismmolecules_organic.html Interstellar molecules

4 K.-H. Homman, Angew. Chem. 1998, 110, 2572; Angew. Chem. Int. Ed. Engl. 1998, 37, 2435; Flames

5 Picture : H. Linnartz Pulsed Electrical Discharge

6 2= 157 nm, 189nm, 212nm Experiment

7 Mass spectrum

8 electronic transitions- HC 2n H excitations:   + g  →→ (n)  u / (n-1)  g →→ (n)  g/u A   u (n)  u / (n-1)  g →→ (n)  g/u    + u (n)  u / (n-1)  g →→ (4n)  g/u    u (4n-1)  g/u →→ (n)  g/u    u

9 HC 2n H(n=8-13):   + g  →→   + u R2CPI-spectra of acetylenic chains

10  states: HC 6 H, HC 8 H, HC 10 H, HC 12 H, HC 14 H HC 2n H(n=3-7):   + g →→   u,   - u  dipole-forbidden ( bending)

11 strong B-transiton! Observed and Calculated Values

12 electronic transitions- HC 2n+1 H excitations:   - g  →→ (n-1)  g / (n-1)  u →→ (n)  u / (n-1)  g a   - u (n)  u / (n-1)  g →→ (n)  g/u b   - u (n)  u / (n-1)  g →→ (4n+4)  g/u C   u mixing of degenerate a(   - u ) and  b(   - u ) yields    - u )=a+b/sqrt(2)    - u )=a-b/sqrt(2) Dewar-Longuet-Higgins (1954, Proc. Phys. Soc. ) on odd alternant hydrocarbons: A occurs at longer wavelength and is weaker than B B must be the strongest transition

13 The HC 2n+1 H Series: HC 7 H, HC 9 H, HC 11 H, HC 13 H HC 2n+1 H(n=3-6): X   - g  →→ A   - u,

14 strong B-transiton HC 19 H is weak in mass spectrum, but still visible HC 13 H... HC 19 H: X   - g  →→ B   - u, MRCI: Mühlhäuser, Peyerimhoff et al. (2002)

15 HC 13 H... HC 19 H: X   - g  →→ B   - u, as predicited in 1954 !

16 extrapolation to C 

17 isoelectronic HC n - system

18 Solvent and endgroup effect

19 Conclusions for odd and even chains: strong B-states: –f~Nc –position in the visible –broad peaks –in the ISM –similar for kation (HC 2n+1 H +, HC 2n+1 H - ), anion sp allotrope: bandgap in UV/visible matrix shifts bondlength alternation

20 HC 2n+1 H: anion - neutral- cation ground state: (n-1)   (n)  (n+ 1)   : (n-1)  (n)  →→ (n-1)  (n)  a   - u (n)  (n+1 )    →→ (n)  (n+1 )     b   - u same behaviour for anions and cations: a and b degenerate-> mixing to yield weak A and strong B transition

21 Bond length alternation: Acetylenic vs cumulenic

22 Bond length alternation: even and odd

23 Bond length alternation: neutral and anionic

24 backup longchains additional material

25 Spectroscopic techniques Spectral range: UV/visible for DIBs Direct absorption –I/I 0 –sensitivity and selectivity –multiple passes and Cavity Ring Down Spectroscopy or Laser induced Fluorescence excited state lifetime, fluorescence quantum yield Mass selective techniques –Resonance Enhanced Multi Photon Ionisation (and related - R2ColourPhotoDetachment) –change in the m/z ratio (anion  neutral ; neutral  cation, cation  Fragment) –sensitivity for ion detection is high! –additional molecular information: mass –physics of the ionisation/detachment process is important

26 Ion:D 0 S1S1 S1S1 Neutral:S 0 IP/2 IP common example:“uncommon Example”:C n C n *  C n-m +C m Cn+Cn+ near UV UV vis near UV C n *+  C n-m + +C m exit channels? REMPI scheme

27 Franck- Condon factors Excitation scheme even odd

28 strong solvent shift: 4000 cm -1 to the red

29 HCCH + HCCH - + C HCCH - HCC - C - HC 2n H HC 2n -

30

31 R2CPI-spectra of acetylenic chains   + g  →→   + u

32 Even : HC 6 H, HC 8 H, HC 10 H, HC 12 H, HC 14 H HC 2n H(n=3-7):   + g  →→   u

33 The HC 2n+1 H Series: HC 7 H, HC 9 H, HC 11 H, HC 13 H... HC 19 H

34

35

36 end polayacetylenes additional material

37 Gas phase electronic spectra of linear carbon chains: HC n+1 H, HC n H, HC n+1, HC n Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 1 abcd Switzerland Ltd., Baden, Switzerland 2 Institut für Physikalische Chemie der Universität Basel, Basel, Switzerland 3 Laboratoire de Photophysique Moleculaire, Universite Paris-Sud, Orsay, France 4 Sydney University, Sydney, Australia Bunsentagung, Dresden 2004

38 C 3 H- identified in the ISM by microwave spectroscopy! spectrum in the visible detected via R2CPI with F2 laser in the VUV !!

39 C3HC3H complicated spectrum! Renner-Teller (4 atoms) distorted more than one electronic state

40 C3HC3H ground state: 2  linear-bend transition 3 electronic states contribute to spectrum complicated Renner- Teller distorted spectrum! individual lines to weak to be detected in the ISM by vis-absorption

41 electronic transitions- C 2n H excitations:   →→ (4n+1)  →→ (n)    :weak, IR (n-1)  →→ (n)    :strong, vis (n)  →→ (n+1)    :weak UV excitations:   →→ (n)  →→ (4n+1)    (4n+1)  →→ (n+1)    (n)  →→ (n+1)   

42 The C 2n+1 H Series: C 3 H,C 5 H,C 7 H,C 9 H

43 electronic transitions- C 2n+1 H excitations:   →→ (4n+3)  →→ (n)           :vis (n-1)  →→ (n)    : vis (n)  →→ (n+1)    :

44 The C 2n+1 H Series: C 3 H,C 5 H,C 7 H,C 9 H 2  →→             - 3- 4 different electronic states!

45 Extrapolation

46 end longchains additional material

47 C 7 H 7 - Tropyl vs. Benzyl 7 ring / 6 ring from stable C 7 H 7 + ion!

48 C 7 H 7 - Tropyl vs. Benzyl C 6 H 5 CH 2 :C ←← X: tropyl radical –complex spectrum –Jahn-Teller distorted: –D 7h

49 C 7 H 3 - identification of the structure!

50 variety of candidates geometries DFT B3LLYP/6_31G* calculation : –energies –rotational constants

51 C 7 H 3 -rotational K-structure! rotational structure! –down selection: -> 3 member ring –spin statistics : -> isomer 2

52 C 7 H 3 - structure identified! no methyl group! –unlike C 9 H 3,C 11 H 3,... (Schmidt et al. IJMS 2003)

53 REMPI aromatics additional material

54

55

56 R2PI-Spectra from Benzene-Discharge

57

58

59 end REMPI

60 AB + + h -> A + + B, A + detected AB + from source, hscanned for resonance

61

62 Fragmentation spectroscopy for van der Waals clusters: M·Ar n + + h -> M M·Ar n-1 + + Ar,M= HC 4 H

63 extrapolatio n of band origins

64 end Fragmentation additional material


Download ppt "Felix Güthe 1, Hongbin Ding, Thomas Pino 3, Tim W. Schmidt 4, Andrei Boguslavskiy John Maier Institut für Physikalische Chemie der Universität Basel, Basel,"

Similar presentations


Ads by Google