Presentation is loading. Please wait.

Presentation is loading. Please wait.

Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Capability of optical code-based MPLS (OC-MPLS) K. Kitayama, K.Onohara, and M. Murata Osaka University, Japan.

Similar presentations


Presentation on theme: "Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Capability of optical code-based MPLS (OC-MPLS) K. Kitayama, K.Onohara, and M. Murata Osaka University, Japan."— Presentation transcript:

1 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Capability of optical code-based MPLS (OC-MPLS) K. Kitayama, K.Onohara, and M. Murata Osaka University, Japan E-mail: kitayama@comm.eng.osaka-u.ac.jp

2 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Outline Motivations for optical-code based (OC)-MPLS OC-photonic labels and their ultra-fast processing capability Versatile applications to;  LSP switching  Flow/packet classification for diffserv

3 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama MPL(ambda)S or MP S Ingress PLSR Core PLSR Egress PLSR 10 4 133.1.12.14  10 Out LabelIn Label 10 133.1.12.14 Out Label In Label 133.1.12.4 4 Out LabelIn Label

4 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Optical-code based MPLS Ingress PLSR Core PLSR Egress PLSR OC 10 OC 4 133.1.12.14 OC-PL4 OC-PL10 Out LabelIn Label OC-PL10133.1.12.14 Out Label In Label 133.1.12.4OC-PL4 Out LabelIn Label M. Murata and K. Kitayama, IEEE Network Magazine., vol.15, pp.56-63, July/Aug. 2001.

5 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Granularity issue : Bandwidth efficie(curre)ncy t t t 10Gb/s OP1 10Gb/s OP2 10Gb/s OP3 1 2 3 Wavelength path t 10Gb/s OP1&2&3 Optical code path 1 OC1 OC2OC3

6 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Wavelength resource for MP S : Photonic label space Wavelength Subcarrier (m-wave) Optical codes Number of addresses Disadvantages 〜1,000 (〜 2 10 ) 〜100 Abundant May not large enough Flow merge impossible May not large enough < 40Gb/s Table lookup Simple Optical filter Milimeter-wave filter Ultra-fast Passive device As many as label count Impairments in propagation

7 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama How fast label processings do we need? StreamBurst Packet Data granularity min msec  sec nsec Data granularity / 20 (Hop accounts) minmsec  sec nsec Data granularity / 20 (Hop accounts) / Processing steps (10) msec  sec nsec min Processing speed/hop/step Opaque (O-E-O) Transparent O-O-O Opaque (O-E-O) Transparent O-O-O

8 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Optical correlation: A technique to recognize OC-photonic labels -1- tt Auto-correlation Cross-correlation Optical code i Optical code j Optical code k Cross-correlation Auto-correlation 0000 00  0  0 Optical correlation in time-domain indicates how orthogonal two codes are. Matched codes : Auto-correl. Unmatched codes : Cross-correl. t t t t t t

9 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Optical correlation: A technique to recognize OC-photonic labels -2- 8-chip bipolar OC-photonic label@10Gb/s Optical endoderOptical correlator Auto-correlation: Label match Cross-correlation: Label unmatch Proccessing speed is only limited by the light velocity!!! No optical logic devices but passive waveguide devices!!! K. Kitayama, N. Wada, and H. Sotobayashi, IEEE J. Lightwave Technol., vol.18, pp.183-1844, 2000.

10 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Versatile applications of OC-photonic labels Optical frame OC-photonic label Data Photonic label processings Photonic label processings LSP IP packet Packet LSP switching Packet routing Flow/packet classification OC-MPLS OBS Packet ADM

11 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Packet-selective photonic add/drop multiplexer K. Kitayama et al, ONDM2001 (Viena, Feb.2001) Photonic ADM t t 1 t t Finest granularity!

12 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Experimental results of variable-length packet-selective PADM @ 10Gbit/s 64bit data Input packets Drop (matched label) Cut-thru (unmatched label) 5.0[ns/div] Photonic labels K. Kitayama et al., ECOC2001., Th.L.1.6 (Amsterdam 2001).

13 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Exact match & longest-prefix match algorithms Input address 133.243.145.66 Routing table Address 0000-0255 1000-1066 1067-1255 Data (IP address) 133.1.44.0 - 133.1.44.255 133.243.145.0 - 133.243.145.66 133.243.145.67 - 133.243.145.255 Hit address 1066 Exact match algorithm for MPLS Routing table Address 0000 0001 Data 133.1.44.0 133.243.145.0 Hit address 0001 Mask data 255.255.255.0 Longest-prefix match algorithm for IP routing Input address 133.243.145.66

14 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Photonic label processing with variable optical time-gate Photonic label processor Photonic label processor Optical switch Incoming traffic Outgoing traffic Header with OC-photonic labels Payload data Variable time-gate Variable time-gate For longest match code-length can be selected For longest match code-length can be selected For exact match Destination and/or source codes can be gated out; For exact match Destination and/or source codes can be gated out;

15 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Experimental setup for longest-prefix match Optical encoder t Variable optical time-gate 1 Optical correlator1 t Time window (masking) t 4 t t 6 t Variable optical time-gate 2 Optical correlator2 + - Input code

16 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Experimental results of longest-prefix match 4 chip 8 chip 4-8 chip 50 ps/div 4-chip 8-chip (a) (b)(c)

17 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Flow / packet classifier -1 Flow/packet classifier Flow/packet classifier Marker Shape/delay Drop Meter Output In-packet Out-packet Flow 1 Flow 2 Input  Diffserve has a good scalability!!!  Per-hop behavior (PHB) facilitates hop-by-hop QoS control

18 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Flow / packet classifier -2: Diffserve Field 1ToS t OC-photonic labels Payload data Photonic label processor 1 Photonic label processor 1 Input packets Gate sw. Gate sw. Field 1 Photonic label processor 2 Photonic label processor 2 Gate sw. Gate sw. Type-of-service field 1xN optical sw. 1xN optical sw. Classified flows Flow#1 Flow#N...... Gate signal generator Gate signal generator Field 1 ToS Payload data

19 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Experimental setup for packet classification A MLLD λ 1 =1550nm 10GHz PPG Packet rate LN-IM PPG 10 Gb/s, 64bit data Encoder 2 Data Gate signal generator Gate signal generator 1x2 Opt sw 1x2 Opt sw B for code A Field label 1 Field label 2 B Encoder1 LN-IM C Data Optical gate Optical gate Decoder PD Data C Optical packet transmitter Photonic label processor Optical fiber 50 ps/div CA Data CB CA CB A CA CB

20 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Experimental results of packet classification Switch-on off 5 ns/div Auto-correlation output from decoder Gate signal Input packets Matched Unmatched Field label 1-1 Field label 2-1 64 bit payload Field label 1-2 Field label 2-2 64 bit payload 1 ns/div

21 Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Summary OC-MPLS improves bandwidth efficie(curre)ncy and provides larger label space OC-photonic label enables ultra-fast label processing Experimental demonstrations of versatile applications;  Exact and longest-prefix match algorithms @ 10Gb/s  Flow/packet classification @ 10Gb/s  Fast OBS path setup  Photonic packet switching


Download ppt "Osaka Univ. Feb.5, 2002ONDM2002 K. Kitayama Capability of optical code-based MPLS (OC-MPLS) K. Kitayama, K.Onohara, and M. Murata Osaka University, Japan."

Similar presentations


Ads by Google