Presentation is loading. Please wait.

Presentation is loading. Please wait.

INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space.

Similar presentations


Presentation on theme: "INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space."— Presentation transcript:

1 INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space Research Massachusetts Institute of Technology http://xte.mit.edu/~rr/inpe_IV.2.ppt

2 IV.2 X-ray States of Black Hole Binaries  Thermal States and Accretion Disk Models Defining States: Energy and Power Density Spectra Observational Support for the Multicolor Disk Model Applying Relativistic Disk Models  Hard State, Jets, and Microquasars Hard State and a Steady Jet Advection Models (ADAF and CDAF) Synchrotron/Compton Models  Steep Power-Law of Black Hole Binaries Summary of Properties Link to High-Frequency QPOs  Further Considerations of BH X-ray States Overview of X-ray State Evolution Alternative Descriptions of X-ray States Statistics of State Occupations

3 X-ray States of BHBs 1.Thermal State: inner accretion disk

4 X-ray States of BHBs 1.Thermal State: f disk > 75%; rms < 0.075 ; no QPOs (a max < 0.5%) inner accretion disk

5 Thermal State Paradigm Theory: Hot gas in thin disk + viscous dissipation Rel. MHD: Plasma + Magneto-Rotational Instability  Thermal radiation ; weakly magnetized disk T(r)  r -p ; p ~ 0.7 (Kubota et al 2005) (GR tweak of p=0.75) modified disk blackbody GX339-4 Relativistic Fe line blackbody energetics GR/Keplerian velocities? Kubota & Done 2004; Gierlinski & Done 2004 e.g. Miller et al. 2004; but see Merloni & Fabian 2003

6 Emissivity vs. Radius in the Accretion Disk GR Applications for Thermal State Shakura & Sunyaev 1973; Makishima et al. 1986; Gierlinski et al. 1999; Zimmerman et al. 2005 Page & Thorne 1974; Zhang, Cui, & Chen 1997 Gierlinski et al. 2001; Li et al. 2005

7 Relativistic Accretion Disk: Spectral Models GR Applications for Thermal State e.g. kerrbb in xspec Li et al. 2005; Davis et al. 2005 Integrate over disk and B (T) Correct for GR effects (grav-z, Doppler, grav-focusing) Radiative transfer (i.e. f factor)

8 Thermal state X-ray spectra  BH spin Shafee et al. 2006; Davis, Done & Blaes 2006; McClintock et al. 2006 Input M x, d(kpc), disk inclination (i) Run model trials for values of:  (viscosity parameter) model Comptonization (comptt, power-law, broken pow.) fit hardening factor  vs. use Davis and Blaes model Derive a * (for various trials) in range of L x

9 BH spin McClintock et al. 2006

10 BH spin McClintock et al. 2006 theory: disk should thicken near L x ~ 0.3 L EDD

11 Thermal state  BH spin Shafee et al. 2006: a * ~ 0.75 for GROJ1655-40, 4U1543-47 Davis, Done & Blaes 2006: “moderate spin” (0.1-0.8) for XTEJ1550-564, LMC X-3 McClintock et al. 2006: a * > 0.98 for GRS1915+105 ------ Systematic concerns: Are  -disk assumptions valid? Theory of radiative transfer (hardening factor) accurate? ISCO is smeared by B-coupling? (Page & Throne 1974; Agol & Krolik 2000)

12 Hard State of BHBs 2. Hard State f disk 0.10 steady jet 

13 Hard State of BHBs: Steady Radio Jet 2. Hard State f disk 0.10 radio : X-ray correlations: Corbel et al. 2000; Gallo et al. 2003 

14 Hard State of BHBs: Steady Radio Jet Corbel et al. 2000

15 Hard State of BHBs: Steady Radio Jet 50730 50740 50750 MJD GRS1915+105 Oct. 1 – Nov. 7, 1997 X-ray c/s H-ray HR Radio Flux Radio index

16 Modeling the Hard State ADAF models: (Advection-Dominated Accretion Flow) transition: Keplerian to quasi- radial inflow at ~100-500 R g energy ‘advected’ into BH electrons can still radiate some synchrotron and inverse Compton controversies! Model evolution! ADAF  CDAF (convective DAF)  more outflow XTEJ1118+480 (low N H )….truncated, cool disk (McClintock et al. 2001)

17 Modeling the Hard State Hybrid models: Synchrotron/Compton (Markoff, Nowak, & Wilms 2005) Kalemci et al. 2005 ADAF-fed Syn./Comp.? (Yuan, Cui, & Narayan 2005) XTEJ1118+480 synchrotron model (Markoff et al. 2001)

18 States of Black Hole Binaries 3. steep power law compact corona ?  > 2.4; rms < 0.15 ; f disk < 80% + QPOs (or f disk < 50%) mechanism? : inverse Compton origin? : magnetized disk ? Energy spectra Power density spectra 1 10 100.01.1 1 10 100 Energy (keV) Frequency (Hz) Neutron stars (atoll type) have thermal and hard States, but they never show SPL-dominated spectra

19 Steep Power Law Gamma Ray Bright State (Grove et al. 1998) blackbody energetics SPL ||

20 Physical Models for BHB States Energy spectra Power density spectra State physical picture  steep power law Disk + ??  thermal  hard state Energy (keV) Frequency (Hz)

21 Are they different?  Very different X-ray spectra  Extremely Different Gamma Ray Spectra  QPOs vs. none Conclusions:  Do not combine thermal and SPL  “soft”  3 X-ray States  3 Accretion Systems Comparing SPL vs. Thermal States

22 High Frequency QPOs (40-450 Hz)

23 High Frequency QPOs source HFQPO  (Hz) GRO J1655-40 300, 450 XTE J1550-564184, 276 GRS 1915+10541, 67, 113, 168 XTE J1859+226190 4U1630-472184 + broad features (Klein-Wolt et al. 2003) XTE J1650-500 250 H1743-322 166, 242 ------- ISCO for 10 M o BH:  = 220 Hz (a * = 0.0)  728 Hz (a * = 0.9) Condensations at preferred radii  QPOs (Schnittman & Bertschinger 2004)

24 High Frequency QPOs source HFQPO  (Hz) GRO J1655-40 300, 450 XTE J1550-564184, 276 GRS 1915+10541, 67, 113, 168 XTE J1859+226190 4U1630-472184 XTE J1650-500 250 H1743-322 165, 241 ------- 4 HFQPO pairs with frequencies in 3:2 ratio

25 HFQPO Frequencies vs. BH Mass GROJ1655, XTEJ1550, and GRS1915+105 qpo at 2 o : o = 931 Hz / M x  Same QPO mechanism and similar value of a *  Compare subclasses while model efforts continue

26 HFQPOs Mechanisms Diskoseismology (Wagoner 1999 ; Kato 2001)  obs. frequencies require nonlinear modes? Resonance in Inner Disk (Abramowicz & Kluzniak 2001).  Parametric Resonance (coupling in GR frequencies for {r,  } Abramowicz et al. 2004 ; Kluzniak et al. 2004; Lee et al. 2005)  Resonance with Global Disk Warp (S. Kato 2004) MHD Simulations and HFQPOs (Y. Kato 2005) Torus Models (Rezzolla et al. 2003; Fragile et al. 2005)  GR ray tracing of accretion torus (Bursa et al.) AEI + Rossby vortex (Tagger & Varniere 2006)

27 BH Outbursts & States GRO J1655-40 1996-97 outburst Thermal x Hard (jet)  Steep Power Law  Intermediate O

28 “Unified Model for Jets in BH Binaries” Fender, Belloni, & Gallo 2004 Remillard 2005 Hard Color X-ray intensity

29 BH States: Overview GX339-4 M x = 5 – 15 M o Frequent outbursts: 1970 - 2005 + extended, faint, hard states Thermal x Hard (jet)   Steep Power Law  Intermediate O

30 BH States: Overview GRO J1655-40 1996-97 outburst Thermal x Hard (jet)  Steep Power Law  Intermediate O

31 BH States: Overview H1743-322 M x unknown (ISM dust) HEAO-1 outburst: 1977 RXTE: 2003; minor outburst 2005 Thermal x Hard (jet)   Steep Power Law  Intermediate O

32 BH States: Overview XTEJ1550-564 M x = 9.6 + 1.2 M o Outbursts: 1998 ; smaller, 2000; + 3 faint hard-state outbursts 2001, 2002, 2003 Thermal x Hard (jet)   Steep Power Law  Intermediate O

33 Black Hole States: Statistics XTE J1550-564 GRO J1655-40 XTE J1118+480 Steep Power Law 26 15 0 Thermal 147 47 0 Low/hard 22 2 10 Intermediate 57 2 0 Timescales (days) for state (all BH Binaries) duration transitions Steep Power Law 1-10 <1 Thermal 3-200 1-10 Low/hard 3-200 1-5 Intermediate 3-30 1-3

34 Low Frequency QPOs (0.05-30 Hz) XTE J1550-564 1998 Sept. 23 QPO: 4 Hz, 12% rms Q ~ 9 Flux 2 Crab (~0.2 L Edd ) f disk = 0.1 QPO wave tracking  random walk in phase (Morgan et al. 1997)

35 Low Frequency QPOs : Subtypes Type: AB C Phase Lag: soft hard near zero  (Hz): ~8 ~6 0.1 – 15 a (rms %) few few 5 – 20 Q : 2 – 3 ~10 ~10 State: SPL SPL Hard/Int. HFQPO coupling yes, 3 o yes, 2 o no HFQPOs Wijnands et al. 1999 Cui et al. 1999 Remillard et al. 2002 Rodriguez et al. 2004 Casella et al. 2005 QPOs across states Jet  INT  SPL ?? diff. mechanism ?? evolution in magnetic instability XTEJ1550-564

36 LFQPO Mechanisms  Periastron precession of emitting blobs in GR (Stella et al. 1999)  Frame Dragging in GR (Stella & Vietri 1998; Fragile et al. 2001)  Resonance oscillation sidebands (Horak et al. 2004)  p-mode oscillations in a truncated disk (Giannios & Spruit 2004)  Inertial-Acoustic oscillations (Milson & Taam 1997)  Global disk oscillations (Titarchuk & Osherovich 2000)  Alfven waves (C.M. Zhang et al. 2005)  Accretion-Ejection Instability in disk (magnetic spiral waves) (Tagger & Pellat 1999)  Radial oscillations in accretion shocks (Molteni et al. 1996; Chakrabarti & Manickam 2000)

37 QPO Frequency vs. Disk Flux ? different types of magnetized disk ?


Download ppt "INPE Advanced Course on Compact Objects Course IV: Accretion Processes in Neutron Stars & Black Holes Ron Remillard Kavli Center for Astrophysics and Space."

Similar presentations


Ads by Google