Download presentation

Presentation is loading. Please wait.

Published byEdith Simpson Modified over 2 years ago

1
**Inexact Matching of ontology graphs using expectation maximization**

Universidad Autónoma de Madrid -15 Enero 2010 Inexact Matching of ontology graphs using expectation maximization Prashant Doshi, Ravikanth Kolli, Christopher Thomas Web Semantics: Science, Services and Agents on the World Wide Web 2009 Keywords: ontology, matching, expectation-maximization

2
**Agenda Introduction Expectation Maximization Ontology Schema Model**

Universidad Autónoma de Madrid -15 Enero 2010 Agenda Introduction Expectation Maximization Ontology Schema Model Graph Matching with GEM Random sampling and Heuristics Computational complexity Initial Results Large ontologies Benchmarks Conclusions

3
**Universidad Autónoma de Madrid -15 Enero 2010**

Introduction Growing usefulness of semantic web based on the increasingly number of ontologies OWL and RDF are labeled-directed-graph ontology representation languages Formulation ‘Find the most likely map between the two ontologies’*

4
**Expectation Maximization**

Universidad Autónoma de Madrid -15 Enero 2010 Expectation Maximization Technique to find the maximum likelihood estimate of the underlying model from observed data in the presence of missing data. E-Step Formulation of the estimate M-Step Search for the maximum of the estimate Relaxed search using: GEM

5
**Ontology Schema Model OWL y RDF (labeled directed graphs)**

Universidad Autónoma de Madrid -15 Enero 2010 Ontology Schema Model OWL y RDF (labeled directed graphs) Labels are removed, constructing a bipartite graph.

6
**Graph matching GEM Maximum likelyhood estimate problem**

Universidad Autónoma de Madrid -15 Enero 2010 Graph matching GEM Maximum likelyhood estimate problem Hidden variables: mapping matrix Local search guided by GEM Search-Space

7
**Universidad Autónoma de Madrid -15 Enero 2010**

Graph matching GEM M* gives the maximum conditional probability of the data graph Od given Om. Only many-one matching Focused on homeomorphisms

8
Graph matching GEM MLE problem with respect to map hidden variables

9
Graph matching GEM Need to maximize:

10
Graph matching GEM Probability that xa is in correspondence with ya given the assignment model Each of the hidden variables

11
Graph matching GEM Graph constraints And Smith-Waterman

12
**Graph matching GEM Exhaustive search not possible**

Universidad Autónoma de Madrid -15 Enero 2010 Graph matching GEM Exhaustive search not possible Problem: local maxima Use K random models + heuristics If two classes are mapped, map their parents + Random restart

13
**Computational complexity**

Universidad Autónoma de Madrid -15 Enero 2010 Computational complexity SW technique is O(L2) EM mapping is O(K*(|Vm|*|Vd|)2 )

14
**Universidad Autónoma de Madrid -15 Enero 2010**

Initial Experiments

15
**Universidad Autónoma de Madrid -15 Enero 2010**

Large Ontologies

16
**Universidad Autónoma de Madrid -15 Enero 2010**

Benchmarks

17
**Conclusions Structure and Syntactic vs External Resources**

Universidad Autónoma de Madrid -15 Enero 2010 Conclusions Structure and Syntactic vs External Resources Weak performance: dissimilar names and structure Good performance: extensions and flattening Not scalable : partitioning and extension No longer GEM, but converges Future work: Markov Chain MonteCarlo methods Extensible algorithm: can include other aproaches

Similar presentations

Presentation is loading. Please wait....

OK

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Download ppt on smart note taker Ppt on human environment settlement transport and communication Sample ppt on business plan Ppt on seven segment display Ppt on electric meter testing software Free download ppt on sustainable development Computer brain ppt only Download ppt on animal kingdom classification Download ppt on turbo generator Ppt on organizational culture and values