Presentation is loading. Please wait.

Presentation is loading. Please wait.

GSI Data Assimilation System

Similar presentations


Presentation on theme: "GSI Data Assimilation System"— Presentation transcript:

1 GSI Data Assimilation System
WRF-DA Tutorial, July, 2009, Boulder, CO GSI Data Assimilation System Hui Shao, Ming Hu, Laurie Carson, Louisa Nance, Xiang-Yu Huang, Bill Kuo Developmental Testbed Center John Derber, Russ Treadon NOAA/NCEP/Environmental Modeling Center Acknowledgement: NOAA, AFWA, NCAR

2 Primary Developers NOAA/NCEP/EMC NASA/GMAO And NOAA/GSD, NCAR/MMM,…
John Derber, Jim Purser, Russ Treadon, Wan-Shu Wu, Dave Parrish, Lidia Cucurull, Dave Parrish, Manuel Pondeca, Paul van Delst, Daryl Kleist, Xiujuan Su, Yanqiu Zhu, and others NASA/GMAO Ricardo Todling, Ron Errico, Runhua Yang, Ron Gelaro, Wei Gu, and others And NOAA/GSD, NCAR/MMM,…

3 Session Outline GSI System and Community Support (30 minutes, presented by Hui Shao) Installation, Running, and Diagnostics (30 minutes, presented by Ming Hu)

4 GSI System 4

5 Gridpoint Statistical Interpolation (GSI)
3D variational assimilation (same as WRF-VAR) J =1/2 (x-xb)TB-1(x-xb) + 1/2(H(x)-y0)T(E+F)-1(H(x)-y0) + JC Fit to background + Fit to observations + constraints x = Analysis (Output) xb = Background (Input) B = Background error covariance (Input) H = Forward model (within GSI) y0 = Observations (Input) E+F = R = Instrument error + Representativeness error (Input) JC = Constraint terms (within GSI)

6 Operational GSI Applications
System Implementation date Primary Developers Physical SST retrieval 9/27/2005 NCEP/EMC* NAM (regional) 6/20/2006 RTMA 8/22/2006 GFS (Global) 5/1/2007 HWRF 6/19/2007 Rapid Refresh (RR) 2010 NOAA/GSD AFWA operational 2010 or 2011 NCAR/MMM When RR will be operational? * Collaborated with NASA/GMAO and others 6

7 Air Force Weather Agency Domains
NAM HWRF Rapid Refresh Domain Air Force Weather Agency Domains

8 Write analysis & related output
GSI Code Flow Read in & distribute observations, background & background errors User input & initializations Additional initializations Outer loop a) Set up right hand side of analysis equation (Compute observation innovations) b) Call inner loop Compute gradient information Apply background error Compute search direction Compute step size Update analysis increment Write analysis & related output

9 Background Fields (xb)
Currently works for the following systems Global GFS GMAO global Regional WRF (ARW & NMM) - binary and netcdf NCEP RTMA

10 Observations(yo) *Some of the data are restricted Radiosondes
Pibal winds Synthetic tropical cyclone winds Wind profilers Conventional aircraft reports ASDAR aircraft reports MDCARS aircraft reports** Dropsondes MODIS IR and water vapor winds GMS, METEOSAT and GOES cloud drift IR and visible winds GOES water vapor cloud top winds Surface land observations* Surface ship and buoy observation SSM/I wind speeds QuikScat wind speed and direction SSM/I precipitable water SSM/I and TRMM TMI precipitation estimates Doppler radial velocities VAD (NEXRAD) winds GPS precipitable water estimates GPS Radio occultation refractivity profiles SBUV ozone profiles (other ozone data under test) *Some of the data are restricted

11 Observations(yo) (cont.)
Regional GOES-11 and 12 Sounders – thinned to 120km Channels     Individual fields of view     4 Detectors treated separately     Over ocean only AMSU-A – thinned to 60km     NOAA-15     Channels 1-10, 12, 15     NOAA-18     Channels 1-8, 10-11, 15 AMSU-B/MHS – thinned to 60km     NOAA-15     Channels 1-3, 5     NOAA-16     Channels 1-5     NOAA-17    Channels 1-5     NOAA-18    Channels 1-5 HIRS – thinned to 120km     NOAA-17    Channels     Global GOES-11 and 12 Sounders –thinned to 180km     Channels     Individual fields of view     4 Detectors treated separately     Over ocean only AMSU-A – thinned to 145km     NOAA-15    Channels 1-10, 12-13, 15     NOAA-18    Channels 1-8, 10-13, 15     METOP       Channels 1-13, 15     AQUA          Channels 1-6, 8-13, 15 AMSU-B/MHS – thinned to 240km     NOAA-15     Channels 1-3, 5     NOAA-16     Channels 1-5     NOAA-17    Channels 1-5     NOAA-18    Channels 1-5     METOP        Channels 1-5 HIRS - thinned to 180km     NOAA-17    Channels     METOP        Channels 2-15 AIRS – thinned to 180km     AQUA        148 Channels

12 Observation Operator (H)
To use observation, GSI simulates observation using analysis variables – observation operator (H) Can be simple interpolation to ob location/time. Can be more complex (e.g., radiation transfer). For radiances, GSI uses CRTM.

13 Background Errors (B) Space correlation computed using recursive filters in horizontal and vertical Multivariate relation Flow dependent variability in background error Background error variances modified based on 9 and 3 hour forecast differences: Variance increased in regions of rapid change Variance decreased in “calm” regions Global mean variance ~ preserved Being used for regional (US) surface analysis operationally.

14 Surface pressure background error standard deviation fields
HPC Surface Analysis b) with flow dependent re-scaling L rescaled a) without re-scaling “as is” Surface pressure background error standard deviation fields Valid at 00Z November 06, 2007

15 Moisture analysis Option 1: univariate Option 2: multivariate
Temperature (blue) increment forces large increment in RH (shaded). Option 2: multivariate Temperature (blue) increment forces increment in q (red). much smaller RH (shaded) increment.

16 Observation Errors Improved specification of observational errors
Adaptive Tuning After tuning After tuning and smoothing Before tuning

17 Observation Quality Control
External platform specific QC Some gross checking in PREPBUFR file creation Optimal interpolation quality control (OIQC) – on its way out Analysis QC Gross checks – specified in input data files Variational quality control (VarQC) – implemented operationally in Feb 2009 Number of data rejected by OIQC VarQC weight (W)

18 Bias Correction of Radiance Data
NCEP uses a two step process for Tb Scan angle correction – based on position Air mass correction – based on predictors Predictors mean path length (local zenith angle determined) integrated lapse rate integrated lapse rate ** 2 cloud liquid water

19 B-O Histogram DMSP15 July2004 : 1month before bias correction
19V 19H 22V 37V 37H 85V 85H DMSP15 July2004 : 1month before bias correction after bias correction

20 Community Support 20

21 Community GSI Code Goals: DTC Research Community
System Implementation date Mode Physical SST retrieval 9/27/2005 CRTM + analytical solution NAM (regional) 6/20/2006 3D-VAR RTMA 8/22/2006 2D-VAR Global 5/1/2007 HWRF 6/19/2007 RR Early 2010 AFWA operational 2010 or early 2011 DTC Research Community When RR will be operational? Goals: Provide current operational GSI capability to the research community (O2R) Provide a framework for distributed development of new capabilities & advances in data assimilation (R2O)

22 Definition of Community Codes
Free and shared resource Ongoing distributed development by both research and operational communities Maintained under version control Periodic releases made available to the community Includes latest developments of new capabilities and techniques Centralized support Provided in collaboration with developers

23 GSI Community Release Timetable
Tasks Timeline Note Beta release (Q1FY09) Jun, 2009 Friendly user only (through the GSI website) First release (Q1FY09) Sep, 2009 Tutorial Jun, 2010 With user support Residential tutorial and hand-on practical session

24 Community GSI Code Repository
Proposed Structure Community Repository DTC Developers Code Management Plan NCEP EMC Repository release Community Success of this structure will depend on communication and collaboration among all GSI developers, users, and DTC.

25 User’s Website http://www.dtcenter.org/com-GSI/users/
Release announcement System component descriptions Documentation User’s Guide Presentations Registration Software downloads Bug fix reports User support information Tutorial information Release list? 25

26 GSI User’s Guide User’s Guide will be updated to be consistent with each new release to the community.

27 On-line Tutorial (Beta Release)

28 On-line Documents (Beta Release)

29 GSI Web Brower

30 O2R2O2R2O2R2O2R2O … Which one to choose? clip

31 GSI: Compile 31 2008 Joint WRF Tutorial

32 Requirements System required libraries GSI system
FORTRAN 90/95 compiler C compiler Perl netCDF GSI system Download GSI system tar files (GSIbeta.tar.gz ) from gunzip and untar tar –zxvf GSIbeta.tar.gz (Should see GSI/. directory ) cd to GSI directory cd GSI 32 2008 Joint WRF Tutorial

33 GSI Directory Compile rules Compile scripts Source code directory Run
sorc makefile mains libs bacio crtm_gfsgsi bufr sfcio gfsio sigio w3 mpeu sp 2008 Joint WRF Tutorial

34 Set environment setenv WRF_DIR /home/user/WRFV3 WRF_DIR
WRF needs to be compiled prior to compiling GSI GSI uses WRF I/O API libraries to do file input and output WRF directory specified: setenv WRF_DIR /home/user/WRFV3 netCDF If netCDF libraries are not located in the standard /usr/local , then setenv NETCDF “path for netCDF” For LINUX systems, make sure the netCDF libraries are installed using the same compiler (PGI, Intel, g95) that will be used to compile GSI. 34 2008 Joint WRF Tutorial

35 Configuring GSI To create a GSI configuration file for your computer:
./configure This script checks the system hardware and software (mostly netCDF), and then offers the user choices for configuring GSI: Choices for 32-bit LINUX operated machines are: 1. Linux i486 i586 i686, PGI compiler 2. Linux i486 i586 i686, Intel compiler 3. Linux i486 i586 i686, gfortran compiler Choices for IBM machines are: 1. AIX xlf compiler with xlc 35 2008 Joint WRF Tutorial

36 Configuring GSI, cont. configure.gsi
Created by the ./configure command contains compilation options, rules, etc. specific to your computer can be edited to change compile options, if desired. At this time, the IBM option is well tested. Working on Linux option test. The arch/configure.defaults file can be edited to add a new option if needed. 36 2008 Joint WRF Tutorial

37 Compiling GSI To compile: To get compile help message:
./compile >& compile_gsi.log To get compile help message: ./compile -h If the compilation is successful, it will create one executable under bin/: gsi.exe 37 2008 Joint WRF Tutorial

38 To remove all object files and executables
Clean Compilation To remove all object files and executables ./clean To remove all built files, including configure.gsi ./clean –a Clean is recommended if compilation failed want to change configuration file 38 2008 Joint WRF Tutorial

39 Running GSI User’s Guide: Chapter 3
39

40 To run GSI, you need: GSI Executable Background (first guess) file
Observations Not needed for single observation experiment Fixed files (within GSI package) Run script (namelist included) 40

41 Background GSI can use WRF NMM input file in binary format WRF NMM input file in netcdf format WRF ARW input file in binary format WRF ARW input file in netcdf format GFS input file in binary format GMAO global model input file in binary format DTC has only tested regional analysis with WRF input On IBM: both binary and nedcdf format On Linux: netcdf format only 41

42 Observation All observations have to be in BUFR format
prepbufr: NCEP flavor BUFR Need NCEP BUFR library 42

43 Fixed files Collection of statistic and control files under fix directory Background and observation errors berror_stats, errtable Observation data control file (info files) convinfo , satinfo Bias correction used by radiance analysis satbias_angle, satbias_in Radiance coefficient used by CRTM EmisCoeff.bin, CloudCoeff.bin 43

44 Run script - structure Ask for computer resources to run GSI
Set environment variables for the machine Set experiments variables (experiment name, analysis time, background and observation) Check the definition of required variables Generate a run directory for GSI (working or temp directory) Copy GSI executable to run directory Copy background file to run directory Copy or link observations to run directory Copy fixed files to run directory Generate namelist for GSI Run the GSI executable Save the GSI analysis results 44

45 Run Script - Experiment variables
# analysis time (YYYYMMDDHH) ANAL_TIME= # working direcotry, where GSI runs WORK_ROOT=./gsi/case # path and name of background file BK_FILE=./ /bkARW/wrfout_d01_ _12:00:00 # path of observations OBS_ROOT=./gsi/case PREPBUFR=./tutorialcases/data/newgblav.gdas1.t12z.prepbufr.nr # path of fix files FIX_ROOT=./GSI/fix # path and name of the gsi executable GSI_EXE=./GSI/bin/gsi.exe # which background error covariance and parameter will be used (GLOBAL or NAM) bkcv_option=NAM 45

46 Run Script - run directory
Create a new directory for each run Copy or link data Executable Background Must be copied, will be over-written by analysis result Observations Link or touch if not exist Fixed files Link 46

47 Run Script : namelist Generated by running scripts
Change namelist by editing run script Works for both global and regional analysis Detailed explanation in section 3.4 &SETUP miter=2,niter(1)=5,niter(2)=5, write_diag(1)=.true.,write_diag(2)=.false.,write_diag(3)=.true., qoption=1, gencode=78,factqmin=0.005,factqmax=0.005,deltim=$DELTIM, ndat=59,npred=5,iguess=-1, oneobtest=.false.,retrieval=.false.,l_foto=.false., use_pbl=.false., $SETUP / &GRIDOPTS JCAP=$JCAP,NLAT=$NLAT,NLON=$LONA,nsig=$LEVS,hybrid=.true., wrf_nmm_regional=.false.,wrf_mass_regional=.true., diagnostic_reg=.false., filled_grid=.false.,half_grid=.true.,netcdf=.true., regional=.true.,nlayers(63)=3,nlayers(64)=6, $GRIDOPTS 47

48 Tuning and Diagnostics User’s Guide: Chapter 4
48 48

49 Standard out file - stdout
Includes lots of important information First place to look after any GSI run If successful Data distribution Optimal iteration Maximum and minimum of analysis fields If fails, which part of GSI has problem what is the possible reason for failure 49 49

50 stdout - structure read in all data and prepare analysis:
read in configuration (namelist) read in background read in constant file (fixed file) read in observation partition background and observation data for parallel analysis optimal iteration (analysis) save analysis result 50

51 stdout – example(1) Top of stdout: read in background End of stdout:
0: rmse_var=T 0: ordering=XYZ 0: WrfType,WRF_REAL= 0: ndim1= 3 0: staggering= N/A 0: start_index= 0: end_index= 0: k,max,min,mid T= 0: k,max,min,mid T= ………. 0: k,max,min,mid T= Top of stdout: read in background End of stdout: write out analysis results 0: Read_SpcCoeff_Binary(INFORMATION) : FILE: amsua_n15.SpcCoeff.bin; 0: SpcCoeff RELEASE.VERSION: N_CHANNELS=15 0: Read_SpcCoeff_Binary(INFORMATION) : FILE: amsub_n15.SpcCoeff.bin; 0: SpcCoeff RELEASE.VERSION: N_CHANNELS=5 0: Read_SpcCoeff_Binary(INFORMATION) : FILE: hirs3_n16.SpcCoeff.bin; 0: SpcCoeff RELEASE.VERSION: N_CHANNELS=19 0: Read_SpcCoeff_Binary(INFORMATION) : FILE: amsua_n16.SpcCoeff.bin; Read CRTM coefficient 51

52 stdout – example (2) 0: PROGRAM GSI_ANL HAS ENDED. IBM RS/6000 SP
6: READ_LIDAR: bufr file date is : READ_AIRS: bufr file date is : READ_RADAR: vad wind bufr file date is : READ_PREPBUFR: bufr file date is : READ_BUFRTOVS: bufr file date is mhsbufr 5: n,lat,lon,qm= : READ_PREPBUFR: messages/reports = 872 / ntread = 1 Read observations 0: 0: GLBSOI: START pcgsoi 0: penalty,grad ,a,b= E E E E+00 0: pnorm,gnorm, step? E E+01 good 0: penalty,grad ,a,b= E E E E+00 0: pnorm,gnorm, step? E E+00 good Iteration 0: PROGRAM GSI_ANL HAS ENDED. IBM RS/6000 SP 52

53 Single Observation Test
A good way to check ratio of background and observation variance pattern of background error covariance Setup in namelist SETUP oneobtest=.true., SINGLEOB_TEST maginnov=1.0, magoberr=1.0, oneob_type='t', oblat=20., oblon=285., obpres=850., obdattim= , obhourset=0., 53 53

54 Control Data Usage From namelist and the links of observation files
dfile(01)='prepbufr‘, dtype(01)='ps‘, dplat(01)=' ', dsis(01)='ps' dfile(02)='prepbufr‘ dtype(02)='t', dplat(02)=' ', dsis(02)='t', dfile(27)='amsuabufr‘,dtype(27)='amsua‘,dplat(27)='n15‘,dsis(27)='amsua_n15', dfile(28)='amsuabufr‘,dtype(28)='amsua‘,dplat(28)='n16‘,dsis(28)='amsua_n16', From info file (convinfo …) otype type sub iuse twindow numgrp ngroup nmiter gross ermax ermin var_b var_pg ps ps ps ps ps ps ps ps t t t t t 54 54

55 Observation fit - statistic files
55

56 Convergence Information
stdout 0: 0: GLBSOI: START pcgsoi 0: penalty,grad ,a,b= E E E E+00 0: pnorm,gnorm, step? E E+01 good 0: penalty,grad ,a,b= E E E E+00 0: pnorm,gnorm, step? E E+00 good More detail in fort.220 J= E E E+00 E E E+04 E E E+04 E E E+00 E E+04 20 items in cost function: 5 wind observation satellite radiance observation temperature observation 8 precipitable water obs specific humidity obs surface pressure observation 56 56

57 Questions, Comments, Suggestions
57


Download ppt "GSI Data Assimilation System"

Similar presentations


Ads by Google