Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ch. 8: Rotational Equilibrium and Dynamics. Objectives Know the distinction between translational motion and rotational motion. Understand the concept.

Similar presentations


Presentation on theme: "Ch. 8: Rotational Equilibrium and Dynamics. Objectives Know the distinction between translational motion and rotational motion. Understand the concept."— Presentation transcript:

1 Ch. 8: Rotational Equilibrium and Dynamics

2 Objectives Know the distinction between translational motion and rotational motion. Understand the concept of torque and be able to make related calculations.

3 Rolling Race Roll various objects down a ramp: spheres, solid cylinders, hollow cylinders, and washers. Compare which objects are the fastest. Develop a hypothesis regarding what factor(s) affect the relative speeds of the different objects.

4 Masses and Motion point masses (center of mass) can have translational motion extended masses can have rotational motion Each type of motion can be analyzed separately.

5 Torque torque: the ability of a force to rotate an object around an axis (  )  = F·d·sin  vector quantity clockwise (─) counterclockwise (+)  =  1 +  2 +  3 + … F  d

6 Net Torque Problem Jack (244 N) and Bill (215 N) are sitting at opposite ends of a horizontal teeter-totter. If Jack is sitting 1.75 m from the center and Jill is sitting 1.95 m from the center, what is the net torque? What is the net torque if the teeter-totter is oriented upward at a 15 o angle toward Jill’s end?

7 Objectives Understand the concept of “center-of-mass.” Be able to find the center of mass for an irregularly-shaped object. Understand the concept of “moment of inertia.” Be able to compare the moment of inertia for differently-shaped objects. Understand the concept of rotational equilibrium and make related calculations.

8 Center of Mass center of mass: the point around which an object rotates if gravity is only force acting (see video)

9 Center of Mass “Fosbury Flop” An object will “topple” once its center of mass is no longer supported by a pivot.

10 Finding the Center of Mass Follow the directions for the “Quick Lab” on page 284. Predict the location of the center of mass before you proceed. You don’t need to write anything—just for fun.

11 Moment of Inertia moment of inertia (I): the tendency of an object to resist changes in rotational motion related to mass distribution This is why hoops accelerate slowly and spheres quickly torque needed to rotate differs (try book)

12 Moment of Inertia

13 Moment of Inertia Problem What is the moment of inertia of a 35 gram metal cylinder with r = 0.015 cm rolling down an incline?

14 Moment of Inertia Questions Does a single object have a single moment of inertia? Explain. What shape/axis would have the largest moment of inertia theoretically? Why do bicycles have such large, yet thin tires?

15 Rotational Equilibrium Translational equilibrium:  F = 0 (no linear acceleration) Rotational equilibrium:  = 0 (no rotational acceleration) Any axis can be used—choose for simplicity!

16 Rotational Equilibrium A 5.55 N meter stick is suspended from two spring scales (one at each end). A 9.05 N mass is hung at the 65.0-cm mark. How much force is applied by each spring scale (scale A, scale B)?

17 Objectives Understand the concepts of angular speed and angular acceleration. Be able to make angular speed and angular acceleration calculations.

18 Radians  r s

19 Angular Speed

20 Angular to Tangential Speed

21 Angular Acceleration

22 Objectives Understand and use Newton’s second law for rotation. Understand and apply the concept of angular momentum. Understand and apply the concept of rotational KE.

23 Second Law for Rotation

24 Angular Momentum

25 Conservation Problem A 0.11 kg mouse rides the edge of a Lazy Susan that has a mass of 1.3 kg and a radius of 0.25 m. If the angular speed is initially 3.0 rad/s, what is the angular speed after the mouse moves to a point 0.15 m from the center?

26 Rotational Kinetic Energy

27 Rotational KE Problems A 1.5 kg solid sphere with radius 12 cm begins rolling down an incline. What is the translational speed of the sphere after it has dropped a vertical distance of 2.4 meters?

28 Objectives Be able to identify simple machines. Be able to explain how simple machines make doing work “easier.” Be able to calculate the ideal mechanical advantage (IMA), actual mechanical (AMA) advantage, input work (W A ), output work (W O ), and efficiency (e) of a simple machine.

29 Simple Machines Simple machines generally make doing work easier by reducing applied force (but distance is increased). 4 kinds: lever, inclined plane, pulley, wheel and axle input work: W A = F A ·d A output work: W O = F O ·d O If no friction: W A = W O If friction is present: W A > W O

30 Simple Machines mechanical advantage (MA): factor by which input force is multiplied by the machine efficiency: ratio of output work to input work (indicates amount of friction in machine) “ideal”“actual”


Download ppt "Ch. 8: Rotational Equilibrium and Dynamics. Objectives Know the distinction between translational motion and rotational motion. Understand the concept."

Similar presentations


Ads by Google