Presentation is loading. Please wait.

Presentation is loading. Please wait.

ISSI Meeting, Bern 19-23 January 2014 New 3D photochemical global model with ions in D-region: The instrument for solar-atmospheric relations study Alexei.

Similar presentations


Presentation on theme: "ISSI Meeting, Bern 19-23 January 2014 New 3D photochemical global model with ions in D-region: The instrument for solar-atmospheric relations study Alexei."— Presentation transcript:

1 ISSI Meeting, Bern 19-23 January 2014 New 3D photochemical global model with ions in D-region: The instrument for solar-atmospheric relations study Alexei Krivolutsky Lidiya Cherepanova, Tatyana Vyushkova, and Alexander Repnev Laboratory for Atmospheric Chemistry and Dynamics Central Aerological Observatory, Dolgoprudny, Moscow Region Russia

2 Outline 1. Model description 2. Results of simulations: - neutral compounds; - electrons; - other ions. 3. Effects of solar cycle 4. Conclusions

3 MODEL CHARM – I (CHemical Atmospheric Research Model with Ions) (Krivolutsky et al., 2015) Heights: 0-90 km P, L – photochemical sources and losses U, V, W – wind components, µ – mixing ratio number of species: neutrals – 41; ions – 23 number of chemical reactions (total): 194 Photodissociation and ionization rates (total) : 48 Methods: “chemical families” for neutrals (Turco, Whitten, 1974) “electroneutrality” for ions Prather’s scheme for advection ( Prather, 1986) Resolution: 2 km Х 5 Х 5 deg., Time step: 100 s

4 List of neutral species “Families” Ox = O 3 + O( 3 P) + O( 1 D); NOy =N + NO + NO 2 + NO 3 + 2N 2 O 5 + HNO 3 + HO 2 NO 2 + ClNO 3 +N( 2 D); Cly=Cl + ClO + OClO + ClOO + HOCl + HCl; HOx=H + OH + HO 2 + 2H 2 O 2 ; others CH 3, CH 2 O, CH 3 O 2, CH 3 O 2 H, CH 3 O, CHO, CO. О 2 ( 1  g ) Source-gases CH 4, CO 2, N 2 O, СF 2 Cl 2, CFCl 3, H 2, Cl 4, Cl 2, СН 3 Cl, CH 2 Cl, О 2, N 2 (fixed profiles), H 2 O(fixed global field/HALOE).

5 PHOTODISSOCIATION RATES (CHARM-I) O2+h  O+O( 1 D) N2O5+h  NO2+NO3 H2O+h  H+OH O2+h  O+O HNO3+h  OH+NO2 CF2Cl2+h  products O3+h  O+O2 CLONO2+h  Cl+NO3 CFCl3+h  products O3+h  O( 1 D)+O2 HCl+h  H+Cl CH4+h  CH3+H H2O2+h  OH+OH ClO+h  Cl+O CH4+h  CH2+H2 NO2+h  NO+O(1 D) NO3+h  NO+O2 CCl4+h  products HNO3+h  H+NO3 H2O2+h  OH+OH CH3Cl+h  CH3+Cl HOCl+h  Cl+HO CO2+h  CO+O N2O+h  N2+O(1D) N2O5+h  2NO2+O HO2NO2+h  HO2+NO2 Cl2+h  Cl+Cl NO+h  N+O NO2+h  NO+O NO3+h  NO2+O

6 List of ionized compounds Positive: O 2 + O 4 + O 2 + (H 2 O) H + (H 2 O) H + (H 2 O) 3 H + (H 2 O) 4 H + (H 2 O) 2 NO + N 2 NO + CO 2 NO + (H 2 O) NO + (H 2 O) 2 NO + (H 2 O) 3 NO + Negative: [e] O 2 - O 3 - O 4 - CO 4 - O - OH - CO 3 - O 2 - (H 2 O) HCO 3 -

7 Ionization 1-10 nm ( X-Rays) 102,7-111,8 nm О 2 ( 1  g ) q(z)=n(O 2 ( 1  g ))  0,549  10 -9 exp(-2,406  10 -20 N(O 2 )+2,614  10 -9 exp(-8,508  10 -20 N(O 2 ))  121,6 nm ( L α ) NO GCRs (Heaps, 1978)

8 ARM -Atmospheric Research Model (GCM) (Krivolutsky et al., 2012) Altitudes: 0-135 км Resolutions: vertical– 1 km; longitudinal – 10 0 ; latitudinal– 5 0 time step – 5 min. Paramaterizations: Heating - О2, О3, Н2О (Strobel, 1978; Chou et al., 2002); IR cooling- СО2, О3, H2O, NО ( Chou et al., 2002; Fomichev, 2003; Kockarts, 1980), IGWs (Lindzen, 1981) Planetary waves at lower boundary (S=1,2.3)

9 Global temperature field for July (К) (Krivolutsky et al, 2012)

10 Zonal wind structure (m/s) for July (Krivolutsky et. al, 2012) Height (km) latitude

11 Amplitude of D tidal component in zonal wind (m/s) July ( Krivolutsky et al., 2012) Height (km) latitude

12 Amplitude of SD tidal component in zonal wind (m/s) July (Krivolutsky et al., 2012) Height (km) latitude

13 Neutral compounds: O 3 ( ppmv) January

14 Neutral compounds: NOy ( ppbv) January (CHARM-I)

15 Neutral compounds: HNO 3 ( ppbv) January (CHARM-I)

16 Neutral compounds: N 2 O ( ppbv) January

17 Calculated ionization rate by L α

18 Electron density, 80 km (number/cm**3) 1 st January (00:00 UT) Latitude Longitude 050100150200250300350 -50 0 50

19 IONS: electron density, 60 km (number/cm**3) 1 st January (00:00 UT)

20 NO + (number/cm**3) at 80 km 1 st January (00:00 UT)

21 NO + (number/cm**3) at 70 km 1 st January (00:00 UT)

22 O2 + (number/cm**3) at 80 km 1 st January (00:00 UT)

23 O2 + (number/cm**3) at 70 km 1 st January (00:00 UT)

24 O - 2 (number/cm**3) at 80 km 1 st January (00:00 UT)

25 O - 2 (number/cm**3) at 60 km 1 st January (00:00 UT)

26 1 st January (noon)

27

28

29 electrons (number/m**3) 45 N (noon)

30 POSITIVE IONS: O2 + (number/m**3) 45 N (noon)

31 POSITIVE IONS: H + (H 2 O) 4 (number/m**3) 45 N (noon)

32 POSITIVE IONS: O 2 + H 2 O 45 N (noon)

33 Effects of solar cycle simulated with CHARM-I

34 Solar cycle in UV radiation (Matthew et al., 2012)

35 Solar UV variations (164,5 нм)

36 Solar UV spectrum variations used in model runs

37 Ozone change (%) max-min

38 O x change (%) max-min

39 HO x change (%) max-min

40 NOy change (%) max-min

41 Simulated changes in electron density (%) between max. and min. of solar cycle (January)

42 Simulated changes in NO + (%) between max. and min. of solar cycle (January)

43 Simulated changes in NO + (H 2 O) (%) between max. and min. of solar cycle (January)

44 Simulated changes in O 2 + (%) between max. and min. of solar cycle (January)

45 Concluding remarks 1. It seems that CHARM-I reproduces ion and neutral composition well. 2. UV variations disturb neutrals ( ozone etc) and ion composition due to its interactions. 3. Solar cycle in ionization was included only by L α, L β 4. Effect of particles will be included.

46 Thank you for your attention!


Download ppt "ISSI Meeting, Bern 19-23 January 2014 New 3D photochemical global model with ions in D-region: The instrument for solar-atmospheric relations study Alexei."

Similar presentations


Ads by Google