Presentation is loading. Please wait.

Presentation is loading. Please wait.

Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA Tony van Eyken EISCAT.

Similar presentations


Presentation on theme: "Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA Tony van Eyken EISCAT."— Presentation transcript:

1 Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA Tony van Eyken EISCAT Association, Norway Mary McCready SRI International, USA Christine Amory-Mazaudier Centre for the Study of Earth and Planets Environments, CNRS, France Shoichiro Fukao Research Institute for Sustainable Humanosphere, Kyoto University, Japan Michael Sulzer Arecibo Observatory, National Astronomy & Ionosphere Center, Puerto Rico

2 Outline  ISR long-term database  Modeling technique  Results: local models A case study: Annual variations Comparisons with IRI Applications  Regional Models  ISR Convection Model  Model Availability  Future Projects

3 World Incoherent Scatter Radars

4 MADRIGAL: Long-term ISR Database www.openmadrigal.org

5 Madrigal

6 The European Chain: EISCAT Svalbard Radar (1997-), in polar cap, the highest latitude EISCAT Tromsø UHF radar (1984-) and VHF radar (1990-), St. Santin Radar (1973-1986) East America Chain Sondrestrom Radar (1990-) Millstone Hill Radar (1970-) Arecibo Radar (1966-) East Asia MU Radar (1986-2003) Existing Long-term Data

7 Binning and Fitting technique  Data are binned according to local time and month  Piece-wise linear height profile is used for initial data binning with 17-19 height nodes.  Solar activity dependency is determined by a leaset-squares fit to a linear function to F107.  Median filter (3 months x 3 hours) is applied to the fitting coefficients.

8 Analytic representations of bin-fit results  Seasonal variations: harmonics with 12, 6 and 3 month components  Local time variations: harmonics with 24, 12, 6 and 3 hour components  Height variations: cubic B-spline with 17 breaks and gradient controls at upper and lower boundaries.

9 Height Profile

10 Height Profile Basis Function

11 Data Distribution

12 Results: Midday Ne Svalbard Millstone Arecibo Shigariki Curve Color Code Winter Spring Summer Autumn St. Santin Tromso Sondrestrom

13 Results : Latitudinal and Longitudinal features subauroral midlatitude highlatitude Semiannual components, longitudinal differences Strong semiannual components, asymmetry Semiannual components starts to occur Lower midlatitude

14 O/N2 and SZA change O/N2 (from MSIS)O/N2 x cos (SZA) SZA = solar zenith angle

15 Ti At Millstone, highest Ti occurs in May.

16 Yearly variations: Millstone

17 Yearly variations in midday Ti at 350 km: Millstone Circles: Data Dashed: Model Percentage difference Data - Model difference F107

18 Comparisons with IRI: diurnal AreMUStSMHTroSonSva Ne Ti Te Ne Ti Te Median solar activity conditions with F107=135 or Rz=88

19 Comparisons with IRI: profile AreMUStSMHTroSonSva Ne Ti Te Ne Ti Te Median solar activity conditions with F107=135 or Rz=88

20 Model Applications: Tn and [O] Using a simplified energy equations for ions (widely used in the ISR community for the neutral parameter deduction)

21 ISR Convection Model

22 Regional Ionospheric Models: Millstone Areas Millstone Regional Ionospheric Model covers geodetic latitudes 35- 55 degrees.

23 ISR Convection Model: data A Combined Dataset from Millstone and Sondrestrom ISRs Observations

24 ISR Convection Model: IMF Bz controls

25 ISR Model Availability  Virtual Incoherent Scatter Radars  Web interface  FTP http://madrigal.haystack.mit.edu/models OR http://www.openmadrigal.org

26 Virtual ISRs Virtual ISRs – current day

27 Virtual ISRs – current time

28 Future Projects  Regional ionospheric models for Eastern America longitudes European longitudes

29 A New Space Weather Project Multiple incoherent scatter radar long-term database study of upper atmosphere climatology and variability 1. to generate databases of thermospheric Tn, [O], winds for multiple ISRs; 2. to develop local and regional models of the thermospheric parameters; 3. to create variability models of the ionospheric as well as thermospheric parameters; 4. to study latitudinal/longitudinal features of the ionosphere and thermosphere.

30 Arecibo: Ne diurnal

31 Arecibo: Te diurnal

32 Arecibo: Ti diurnal

33 MU: Ne diurnal

34 Millstone: Ne diurnal

35 Millstone: Ti diurnal

36 Millstone: Te diurnal

37 St. Santin: Ne diurnal

38 St. Santin: Ti diurnal

39 St. Santin: Te diurnal

40 Tromso: Ne diurnal

41 Tromso: Ti diurnal

42 Tromso: Te diurnal

43 Sondrestrom: Ne diurnal

44 Sondrestrom: Ti diurnal

45 Sondrestrom: Te diurnal

46 Svalbard: Ne Diurnal

47 Svalbard: Ti Diurnal

48 Svalbard: Te Diurnal

49 Arecibo: Ne profile

50 Arecibo: Ti profile

51 Arecibo: Te profile

52 MU: Ne profile

53 Millstone: Ne profile

54 Millstone: Ti profile

55 Millstone: Te profile

56 St Santin: Ne profile

57 St Santin: Ti profile

58 St Santin: Te profile

59 Tromso: Ne profile

60 Tromso: Ti profile

61 Tromso: Te profile

62 Sondrestrom: Ne profile

63 Sondrestrom: Ti profile

64 Sondrestrom: Te profile

65 Svalbard: Ne profile

66 Svalbard: Ti profile

67 Svalbard: Te profile


Download ppt "Empirical Ionospheric Models from Worldwide Incoherent Scatter Radars Shun-Rong Zhang and John Holt MIT Haystack Observatory, USA Tony van Eyken EISCAT."

Similar presentations


Ads by Google