Download presentation
Presentation is loading. Please wait.
Published byRalph Bryant Modified over 9 years ago
1
3.9 Graphs of Quadratic Inequalities p. 96-101
2
Forms of Quadratic Inequalities y<ax 2 +bx+cy>ax 2 +bx+c y≤ax 2 +bx+cy≥ax 2 +bx+c Graphs will look like a parabola with a solid or dotted line and a shaded section. The graph could be shaded inside the parabola or outside.
3
Steps for graphing 1. Sketch the parabola y=ax 2 +bx+c. (dotted line for < or >, solid line for ≤ or ≥) ** remember to use 5 points for the graph! 2. Choose a test point and see whether it is a solution of the inequality. 3. Shade the appropriate region. (if the point is a solution, shade where the point is, if it’s not a solution, shade the other region)
4
Example: Graph y ≤ x 2 +6x- 4 * Vertex: (-3,-13) * Opens up, solid line Test Point: (0,0) 0≤0 2 +6(0)-4 0≤-4 So, shade where the point is NOT! Test point
5
Graph: y>-x 2 +4x-3 * Opens down, dotted line. * Vertex: (2,1) * Test point (0,0) 0>-0 2 +4(0)-3 0>-3 x y 0 -3 1 0 2 1 3 0 4 -3 Test Point
6
Page 98 #5-10, 11-16 Page 99 # 34-36 Homework
Similar presentations
© 2024 SlidePlayer.com Inc.
All rights reserved.