Presentation is loading. Please wait.

Presentation is loading. Please wait.

Descriptors (Description of Interest Regions with Local Binary Patterns) Yu-Lin Cheng (03/07/2011)

Similar presentations


Presentation on theme: "Descriptors (Description of Interest Regions with Local Binary Patterns) Yu-Lin Cheng (03/07/2011)"— Presentation transcript:

1 Descriptors (Description of Interest Regions with Local Binary Patterns)
Yu-Lin Cheng (03/07/2011)

2 Outline Scale Invariant Feature Transform (SIFT) Descriptor
Local Binary Pattern (LBP) Descriptor Center-Symmetric LBP (CS-LBP) Descriptor Histogram of Oriented Gradients (HOG) Descriptor

3 SIFT(Scale Invariant Feature Transform )
SIFT Algorithm: descriptor

4 SIFT(Scale Invariant Feature Transform )
Scale-space Extrema Detection: Stable feature points (scale invariant) Principle: A local maximum over scales by using combination of normalized derivatives can be treated as a characteristic point of local structure Use LoG to find maximum scale bad scale Good !

5 SIFT(Scale Invariant Feature Transform )
Scale-space Extrema Detection: Use DoG instead of LoG ---- (computational efficiency)

6 SIFT(Scale Invariant Feature Transform )
Scale-space Extrema Detection:

7 SIFT(Scale Invariant Feature Transform )
Scale-space Extrema Detection: Local extrema detection: Compare to 26 neighbors Keep the same keypoint in all scale

8 SIFT(Scale Invariant Feature Transform )
Scale-space Extrema Detection: Reject points with low contrast

9 SIFT(Scale Invariant Feature Transform )
Accurate keypoints localization: Quadratic function to interpolate the location of maximum Eliminate edge response: r: threshold, H: Hessian matrix

10 SIFT(Scale Invariant Feature Transform )
Orientation Assignment: Assign a consistent orientation to achieve orientation invariant Method:

11 SIFT(Scale Invariant Feature Transform )
Orientation Assignment: Calculate gradient magnitude and direction of neighboring pixels

12 SIFT(Scale Invariant Feature Transform )
Orientation Assignment: Calculate weighted orientation histogram

13 SIFT(Scale Invariant Feature Transform )
Orientation Assignment: Calculate weighted orientation histogram

14 SIFT(Scale Invariant Feature Transform )
Orientation Assignment: Calculate weighted orientation histogram

15 SIFT(Scale Invariant Feature Transform )
Keypoints Descriptor: Empirical result: Cell size: 4×4 pixels Block size: 4×4 cells Dimension: 4×4 (cells) × 8 (bins) = 128 Weighted magnitude

16 SIFT(Scale Invariant Feature Transform )
Keypoints Descriptor: Avoid all boundary effect Use trilinear interpolation Normalization: (illumination invariant) Normalize to unit length Threshlod the maximum value to 0.2 Match the magnitudes for large gradients is no longer important Renormalize to unit length

17 LBP(Local Binary Pattern)
A powerful mean of texture description LBP operator: Standard LBP: Illustration:

18 LBP(Local Binary Pattern)
Example: Parameters: P : Number of neighboring pixels R : Radius

19 LTP(Local Trinary Pattern)
LTP operator: t : threshold Illustration:

20 CS-LBP(Center-Symmetric Local Binary Pattern)
CS-LBP operator: Illustration:

21 CS-LBP Descriptor Flow diagram:

22 CS-LBP Descriptor Interest Region Detection: Detectors: 41×41
1. Hessian-Affine (blob-like structure) 2. Harris-Affine (corner-like structure) 3. Hessian-Laplace (scale-invariant version) 4. Harris-Laplace (scale-invariant version) 41×41

23 CS-LBP Descriptor Feature Extraction: CS-LBP operator:
Parameters: R: radius R = 1, 2 N: number of neighboring pixels N = 6, 8 T: threshold T = 0.2 Descriptor Construction: Location grids 3×3 cells/4×4 cells Avoid boundary effects: Using ‘bilinear interpolation’ 41×41

24 CS-LBP Descriptor Descriptor Normalization: (illumination invariant)
Normalize to unit length Thresholding Renormalize to unit length 2 4 × 4×4 =256

25 Comparison(SIFT v.s. CS-LBP)
Assumption: Computations cannot be reused from detection algorithm Comparison: Conclusion: Computational efficiency and better performance than SIFT

26 HOG(Histogram of Oriented Gradients)
Idea: local object appearance and shape can be rather well characterized by the distribution of local intensity gradients or edge direction

27 HOG(Histogram of Oriented Gradients)
Gradient Computation:

28 HOG(Histogram of Oriented Gradients)
Gradient Computation:

29 HOG(Histogram of Oriented Gradients)
Spatial/Orientation Binning: Weighted votes Function of magnitude Avoid aliasing Interpolation Parameters: Number of orientation bins Cell size Block size Cell Block

30 HOG(Histogram of Oriented Gradients)
Spatial/Orientation Binning: Parameters: Number of orientation bins: 9 bins/18bins Cell size: 8×8 pixels Block size: 2×2 cells

31 HOG(Histogram of Oriented Gradients)
Normalization: Group cells to larger blocks and normalize each block separately (illumination invariant) Normalization Schemes:

32 HOG(Histogram of Oriented Gradients)
Normalization: Normalization Schemes:

33 Comparison(SIFT v.s. HOG)

34 HOG Variation Pixel-Level Feature Maps: ,(p = 9)
‘Object Detection with Discriminatively Trained Part Based Models’ Pixel-Level Feature Maps: Use [-1, 0, 1] to calculate gradient Contrast sensitive(B1), Contrast insensitive(B2) ,(p = 9) Quantize into orientation bins r: gradient magnitude

35 HOG Variation Spatial Aggregation: Normalization:
Rectangular cell: 8×8 pixels Cell-based feature map: Reduce the size of feature map Avoid aliasing: Bilinear interpolation Normalization:

36 HOG Variation Truncation: maximum 0.2 Dimension: No renormalization
9 bins × 4 different normalization = 36 (contrast insensitive)

37 HOG Variation PCA analysis:
Top 11 eigenvectors captures most of information of HOG

38 HOG Variation PCA analysis:
Top eigenvectors lie (approximately) in a linear subspace 13-dimensional features: Project 36-dimensional HOG feature into uk, vk Projection into uk : sum over 4 normalization over fixed orientation Projection into vk : sum over 9 orientation over fixed normalization

39 HOG Variation For Contrast Insensitive(B2):
9 bins × 4 different normalization = 36 (contrast insensitive) For Contrast Sensitive(B1): 18 bins × 4 different normalization = 72 (contrast insensitive) Reduce to (18 + 9) + 4 = 31 dimension

40 Reference “Description of Interest Regions With Local Binary Patterns”, Pattern Regonization ’09 Marko Heikkilä “Effective Pedestrian Detection Using Center-symmetric Local Binary/Trinary Patterns”, Youngbin Zheng “Scale-space Theory” Tony Lindeberg “Histogram of Oriented Gradients for Human Detection”, CVPR ‘05 Navneet Dalal “Finding People in Images and Videos”, Navneet Dalal “Feature matching” Yung-Yu Chuang “Scale & Affine Invariant Interest Point Detectors”, IJCV ’04 Krystian Mikolajczyk

41 Reference “Object Detection with Discriminatively Trained Part Based Models” “Distinctive Image Features from Scale-Invariant Keypoints”, IJCV ’04 David G. Lowe


Download ppt "Descriptors (Description of Interest Regions with Local Binary Patterns) Yu-Lin Cheng (03/07/2011)"

Similar presentations


Ads by Google