Presentation is loading. Please wait.

Presentation is loading. Please wait.

D 0 K + mass spectra D 0 K + mass spectra for: for: B + D 0 D 0 K + B + D 0 D 0 K + B 0 D - D 0 K + B 0 D - D 0 K + B 0 D* - D 0 K + B 0 D* - D 0 K + for.

Similar presentations


Presentation on theme: "D 0 K + mass spectra D 0 K + mass spectra for: for: B + D 0 D 0 K + B + D 0 D 0 K + B 0 D - D 0 K + B 0 D - D 0 K + B 0 D* - D 0 K + B 0 D* - D 0 K + for."— Presentation transcript:

1 D 0 K + mass spectra D 0 K + mass spectra for: for: B + D 0 D 0 K + B + D 0 D 0 K + B 0 D - D 0 K + B 0 D - D 0 K + B 0 D* - D 0 K + B 0 D* - D 0 K + for 250fb -1 (exp7-37) Jolanta Brodzicka, Henryk Palka INP Krakow ICPV meeteing August 5, 2004 Outline : B + D 0 D 0 K + B 0 D - D 0 K + B 0 D* - D 0 K + for 250fb -1 B + D 0 D 0 K + B 0 D - D 0 K + B 0 D* - D 0 K + for 250fb -1 Dalitz plots and projections Dalitz plots and projections Background subtracted M(D 0 K + ) distributions Background subtracted M(D 0 K + ) distributions D sJ (2573) & D sJ (2720) D sJ (2573) & D sJ (2720) Angular distrbutions Angular distrbutions

2 E N/7.5MeV for M bc >5.273 GeV N/2.5MeV M bc for E <18MeV Fitting method: 2-dim M bc vs. E unbinned likelihood fit: L_Sig( M bc, E) = S ( G ( M bc ) G ( E) ) + S ( G ( M bc ) G ( E) ) + S ( G ( M bc ) G ( E) ) + S 2 ( G ( M bc ) G ( E) ) 2 + S 2 ( G ( M bc ) G ( E) ) 2 L_Bckg ( M bc, E) = B ARG ( M bc ) POL_2 ( E ) L= L_Sig + L_Bckg L= L_Sig + L_Bckg LR > 0.04 B + D 0 D 0 K + S = ± 17.3 G 0 ( E) = -0.27E-02 ± 0.07E-02 GeV ( E) = 0.50E-02 ± 0.06E-02 GeV ( E) = 0.50E-02 ± 0.06E-02 GeV G 0 (Mbc) = ± GeV (Mbc) = 0.24E-02 ± 0.02E-02 GeV (Mbc) = 0.24E-02 ± 0.02E-02 GeV S, S 2 : regions with missing,2 S, S 2 : regions with missing,2 Fit result: Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 S/B=0.55

3 B 0 D - D 0 K + LR > 0.01 S = ± 19.2 G 0 ( E) = -0.17E-02 ± 0.07E-02 GeV ( E) = 0.57E-02 ± 0.06E-02 GeV ( E) = 0.57E-02 ± 0.06E-02 GeV G 0 (Mbc) = ± GeV (Mbc) = 0.25E-02 ± 0.02E-02 GeV (Mbc) = 0.25E-02 ± 0.02E-02 GeV E N/7.5MeV for M bc >5.273 GeV N/2.5MeV M bc for E <18MeV Fit result ( for fully reconstructed region): Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 S/B=0.46

4 B 0 D* - D 0 K + LR > S = ± 21.5 G 0 ( E) = -0.36E-02 ± 0.09E-02 GeV ( E) = 0.99E-02 ± 0.10E-02 GeV ( E) = 0.99E-02 ± 0.10E-02 GeV G 0 (Mbc) = ± GeV (Mbc) = 0.26E-02 ± 0.02E-02 GeV (Mbc) = 0.26E-02 ± 0.02E-02 GeV E N/7.5MeV for M bc >5.273 GeV N/2.5MeV M bc for E <30MeV Fit result ( for fully reconstructed region): Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 S/B=0.82

5 ModeSignal for 140fb -1 for 140fb -1 eff [ ] eff [ ] BF [ ] Signal for 250fb -1 for 250fb -1 B + D 0 D 0 K ± ± ± 0.18 ± ± 17.3 B 0 D - D 0 K ± ± ± 0.20 ± ± 19.2 B 0 D* - D 0 K ± ± ± 0.37 ± 0.53 ± ± 21.5 BF calculations based on 140fb -1 Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004

6 (4160) (4160) (3770) (3770) D sJ (2573) M 2 ( D 0 K + ) D sJ (2720) Dalitz plot and projections for Background: elliptical strip 6 to 10 Background: elliptical strip 6 to 10 in Mbc, E, surrounding the signal region in Mbc, E, surrounding the signal region B + D 0 D 0 K + M( D 0 K + ) N / 20MeV M( D 0 D 0 ) M( D 0 K + ) M 2 ( D 0 D 0 ) for signal-box events : for signal-box events : Mbc > GeV E GeV E <16 MeV (~3 ) LR > 0.04 (3770) (3770) (4160) (4160) (4040) (4040) D sJ (2573) D sJ (2720) (3770) reflection (3770) reflection (4160) reflection possible (4160) reflection possible N / 20MeV Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 D sJ (2720) reflection

7 D sJ (2573) Dalitz plot and projections B 0 D - D 0 K + M 2 ( D 0 D - ) M 2 ( D 0 K + ) M( D 0 K + )M( D - K + ) M( D - D 0 ) N / 20MeV for signal-box events : for signal-box events : Mbc > GeV E <18 MeV (~3 ) N / 20MeV LR > 0.01 D sJ (2720) D sJ (2573) Background normalized to number of bckgd. events in signal box Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004

8 D sJ (2720) D sJ (2573) Dalitz plot and projections B 0 D* - D 0 K + M 2 ( D 0 K + ) M 2 ( D 0 D* - ) M( D 0 K + ) M( D* - K + ) M( D* - D 0 ) N / 20MeV for signal-box events : for signal-box events : Mbc > GeV E <30 MeV (~3 ) N / 20MeV LR > D sJ (2720) D sJ (2573) Background Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004

9 M(D 0 K + ) background subtracted distributions 2dim M bc vs. E fits in M( D 0 K + ) bins B signal in M( D 0 K + ) bins fitted Signal with error M( D 0 K + ) Signal / 50MeV B 0 D - D 0 K + B + D 0 D 0 K + D sJ (2573) peak at GeV seen, no D sJ (2573) D sJ (2573) D sJ (2720) and D sJ (2720) observed observed M(D 0 D 0 )>3845 (3770) (3770) region removed: (4160) contributing to 2720 peak is the (4160) contributing to 2720 peak? Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 B 0 D* - D 0 K + Signal / 50MeV M( D 0 K + ) D sJ (2573) D sJ (2720) and D sJ (2720) observed observed

10 Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 M(D 0 D 0 ) for M(D 0 K + ) > 2.9GeV (4160) ( ½ of the (4160) helicity distr.) Signal / 50MeV (4160) (4160) M(D 0 D 0 ) (4160) (4160) contribution to the 11± 5 events (4160) Reflection shape: according to cos 2 angular distribution of the polarized (4160) M(D 0 D 0 ) Signal / 50MeV (4160) (4160) (3770) (3770) M(D 0 D 0 ) background subtracted distribution for B + D 0 D 0 K + M( D 0 K + ) peak at 2.7GeV (4160) contributed to the (4160) and vice versa (they overlap on Dalitz plot) (4160) To estimate of the (4160) contribution to the 2.7GeV peak: D sJ (2720) D sJ (2720)

11 resonances described by non-relativistic Breit-Wigners resonances described by non-relativistic Breit-Wigners Phase Space (nonresonant component) is described by linear function Phase Space (nonresonant component) is described by linear function Fits to background subtracted mass spectra (1) Fits to background subtracted D 0 K + mass spectra (1) Signal / 50MeV fitted B Signal M( D 0 K + ) N = 67.7 ± 12.0 M = 2700 ± 15 MeV = 162 ± 44 MeV = 162 ± 44 MeV D sJ (2720) Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 M( D 0 K + ) – M(D 0 K + ) right - wrong flavour combinations to remove reflections from charmonium states N = 65.1 ± 8.4 M = 2710 ± 7 MeV = 112 ± 22 MeV = 112 ± 22 MeV D sJ (2720) B + D 0 D 0 K + (4160) non-resonant component + reflection from (4160)

12 resonances described by non-relativistic Breit-Wigners resonances described by non-relativistic Breit-Wigners D sJ (2573) the convolution BW G( =50MeV) is used D sJ (2573) the convolution BW G( =50MeV) is used Phase Space (nonresonant component) is described by linear function Phase Space (nonresonant component) is described by linear function Fits to background subtracted mass spectra (2) Fits to background subtracted D 0 K + mass spectra (2) Signal / 50MeV fitted B Signal M( D 0 K + ) N = ± 14.4 M = 2710 MeV fixed = 110 MeV fixed = 110 MeV fixed N = 12.3 ± 3.6 M = 2573 MeV fixed = 15 MeV fixed = 15 MeV fixed D sJ (2720) D sJ (2573) B 0 D - D 0 K + Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 N = ± 19.0 M = 2710 MeV fixed = 110 MeV fixed = 110 MeV fixed N = 32.5 ± 7.9 M = 2573 MeV fixed = 15 MeV fixed = 15 MeV fixed D sJ (2720) D sJ (2573) B 0 D* - D 0 K + M( D 0 K + ) YieldM MeV MeV MeV 2/ndf ± ±14 ± ±7110 fixed15/13 ± ± fixed ± ±3414.5/13 ± ±19 ± ±11 ± ±3115.4/13 Fitvariants:

13 Angular distribution Helicity angle : angle between K + momentum in D 0 K + rest frame and D 0 K + momentum (the boost direction) in B rest frame D D0K+D0K+ D0D0 K+K+ B cos distribution obtained using 2-dim M bc vs. E fit in each cos bin (to subtract background) fitted B Signal corrected for acceptance D SJ (2573) region: B 0 D - D 0 K + signal-box 2.54 < M(D 0 K + ) < 2.6 GeV ( 30 MeV window ) 2.54 < M(D 0 K + ) < 2.6 GeV ( 30 MeV window ) cos cos Compatible with J=2 cos cos Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 Acceptance for MC: B 0 D - D sJ (2573) B 0 D - D sJ (2573) (K )(K ) D sJ (2573) J=2 For D sJ (2573) J=2 Ang.distribution: 9cos 4 - 6cos (previously 3-body D - D 0 K+MC used) (previously 3-body D - D 0 K+ MC used) Eff. corrected signal

14 Angular distribution (2) D sJ (2720) region: B DD 0 K + signal-box 2.64 < M(D 0 K + ) < 2.8 GeV ( 80MeV window ) 2.64 < M(D 0 K + ) < 2.8 GeV ( 80MeV window ) B 0 D - D 0 K + B + D 0 D 0 K + cos cos fitted B Signal corrected for acceptance Eff. corrected signal cos cos Acceptance for signal MC B + D 0 D sJ (2720) B + D 0 D sJ (2720) (K )(K ) D sJ (2720) J=2 assumed For D sJ (2720) J=2 assumed Ang.distribution: 9cos 4 - 6cos (previously 3-body D 0 D 0 K+MC used) (previously 3-body D 0 D 0 K+ MC used) Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 Acceptance for signal MC B 0 D - D sJ (2720) B 0 D - D sJ (2720) (K )(K ) D sJ (2720) J=2 assumed For D sJ (2720) J=2 assumed (previously 3-body D - D 0 K+MC used) (previously 3-body D - D 0 K+ MC used) Eff. corrected signal

15 Backup slides Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004

16 selection cuts accepted events : R 2 < 0.3 tracks : IP _ dz < 5cm IP _ dr < 0.4cm K ± : P( K/ ) > 0.4 ± : P( /K ) > 0.1 electron veto: el_id < 0.95 K 0 S : M( + - ) - M Ks <15MeV only good K 0 s accepted 0 : E >50 MeV M ( ) - M 0 < 15MeV D*reconstruction D ( * ) reconstruction D 0 K, K3, K 0, K s, KK BF ~ 28% of total D ± K, K s, KK, K s K BF ~ 12% of total M(D)-M(D PDG ) < 20MeV ( D 0 K 0 : -50MeV ) vertex fit (cl > 0.) and mass constraint fit applied p(D) < 2 GeV in (4S) system D ( * ) ± D 0 ± M(D*)-M(D)- m PDG ) 0.) B D * D * K reconstruction B D ( * ) D ( * ) K reconstruction B vertex fit: with IP and B constraints M bc > 5.2 GeV < E < 0.35 GeV Analysis method Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004

17 Multi-candidates events treatment D probabilities ( LR_D ): LR_D ( M D ) LR_D ( M D )= B(M D ) S(M D ) + S(M D ), B(M D ) parameterization from fits to data ( inclusively reconstructed D 0, D ± in each decay mode separately ) D plots for ~11fb -1 after preselection p(D) < 2GeV in (4S) system B probability ( LR_B ): LR_B = LR_D 1 × LR_D 2 LR_B used also for background discrimination background discrimination equal LR_B case: larger K ± _ID candidate chosen max LR_B best B candidate : with max LR_B MDMDMDMD D 0 K D 0 K MDMDMDMD D 0 K3 D 0 K3 MDMDMDMD D ± K s D ± K s MDMDMDMD D ± K D ± K MDMDMDMD D 0 K 0 LR_D LR_D Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004

18 Background subtracted mass distributions Background subtracted mass distributions B + D 0 D 0 K + M( D 0 D 0 ) M( D 0 K + ) wrong flavour comb. Signal / 50MeV Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004

19 Angular distribution uncorrected for acceptance fitted B Signal cos cos D SJ (2573) region: B 0 D - D 0 K + signal-box 2.54 < M(D 0 K + ) < 2.6 GeV 2.54 < M(D 0 K + ) < 2.6 GeV D sJ (2720) region: B DD 0 K + signal-box 2.64 < M(D 0 K + ) < 2.8 GeV 2.64 < M(D 0 K + ) < 2.8 GeV B + D 0 D 0 K + B 0 D - D 0 K +

20 Jolanta Brodzicka, Henryk Palka INP Krakow ICPV August 05, 2004 B D ( * ) D ( * ) K : good place to explore spectroscopy: b cW - c c s + dd (uu) D ( * ) K from W vertex B 0 D - D 0 K + Physics motivations Leading quark diagrams: only External diagram only External diagram D 0 K + is the only non-exotic comb., D 0 K + is the only non-exotic comb., D* - D 0 have > 2q content D* - D 0 have > 2q content B + D 0 D 0 K + External + Internal diagrams External + Internal diagrams Both DK and DD states expected Both DK and DD states expected D 0 K + is exotic D 0 K + is exotic _ B 0 D* - D 0 K +


Download ppt "D 0 K + mass spectra D 0 K + mass spectra for: for: B + D 0 D 0 K + B + D 0 D 0 K + B 0 D - D 0 K + B 0 D - D 0 K + B 0 D* - D 0 K + B 0 D* - D 0 K + for."

Similar presentations


Ads by Google