Presentation is loading. Please wait.

Presentation is loading. Please wait.

4 years resident of Ukrainian Village, Chicago outline 1. Introduction

Similar presentations


Presentation on theme: "4 years resident of Ukrainian Village, Chicago outline 1. Introduction"— Presentation transcript:

1 MicroBooNE, Liquid Argon Time Projection Chamber (LArTPC) Neutrino Experiment at Fermilab
4 years resident of Ukrainian Village, Chicago outline 1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion Cryogenic PMT Test Stand Teppei Katori for the MicroBooNE collaboration Massachusetts Institute of Technology New Trend in High Energy Physics, Alushta, Ukraine, Sep. 9, 2011 09/09/2011 Teppei Katori, MIT Fermilab PAB (proton assembly building)

2 5. Future large LArTPC experiments 6. Conclusion
1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion 09/09/2011 Teppei Katori, MIT

3 1. What is LArTPC? a modern bubble chamber experiment
The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) 09/09/2011 Teppei Katori, MIT

4 1. What is LArTPC? a modern bubble chamber experiment
The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Charged particle tracks ionize Argon atoms 40Ar 09/09/2011 Teppei Katori, MIT n

5 1. What is LArTPC? a modern bubble chamber experiment
The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Charged particle tracks ionize Argon atoms Scintillation light (~ns) is detected by PMTs at same time 09/09/2011 Teppei Katori, MIT

6 1. What is LArTPC? a modern bubble chamber experiment
The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Then ionized electrons are drifted to anode wires (~ms) 09/09/2011 Teppei Katori, MIT

7 1. What is LArTPC? a modern bubble chamber experiment
The principle of LArTPC - 3D track reconstruction Bo Yu (BNL) Then ionized electrons are drifted to anode wires (~ms) Electrons near the wires are collected first, and electrons far from the wires are collected last, so drift coordinate information is converted to electron drift time (time is projected) 09/09/2011 Teppei Katori, MIT

8 1. Why LArTPC? A candidate large neutrino detector
300kt Water Cherenkov detector LArTPC vs Water Cherenkov detector - 6 times smaller mass LArTPC has same sensitivity with large Water Cherenkov detector for CPV - Using dE/dx and separation of vertex and photon conversion point, essentially no misID between single electron and photon conversion Energy loss in the first 24mm of track: 250MeV single electron vs 250MeV photon conversion 50kt LArTPC detector 09/09/2011 Teppei Katori, MIT

9 1. LArTPC all over the world
- 2 phase TPC, LEM at gas region for X-Y information Sasso - physics run is ongoing at Gran Sasso - 250L LArTPC was beam tested - goal is to demonstrate ~5m electron drift (210 stage Cockcroft-Walton inside of cryostat) 09/09/2011 Teppei Katori, MIT

10 1. Where are we? We need to demonstrate!
- The 0.7 ton ArgoNeuT was successfully completed. - We are ready for 150 ton MicroBooNE experiment. - future goal is the tenth of kilo ton detector (LAr40). US path to future large LArTPC LAr40 100% Physics MicroBooNE LArSoft 50%R&D 50%Physics ArgoNeuT LAr1 Material test stand “LUKE” (Fermilab) Electronics test stand “Bo” (Fermilab) LAPD Membrane 35ton 100% R&D Yale TPC ?? 09/09/2011 Teppei Katori, MIT

11 1. ArgoNeuT First US LArTPC neutrino experiment
- NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger Argo-NeuT MINOS near detector Neutrinos MINOS near detector hall ArgoNeuT cryostat ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330ms) light collection none 09/09/2011 Teppei Katori, MIT

12 1. ArgoNeuT First US LArTPC neutrino experiment
- NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger ArgoNeuT demonstrates LArTPC neutrino analysis 2 pos decayed to 4 gammas, then converted to 4 e+e- pairs ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330ms) light collection none 09/09/2011 Teppei Katori, MIT

13 1. ArgoNeuT First US LArTPC neutrino experiment
- NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger ArgoNeuT demonstrates LArTPC neutrino analysis - powerful automated reconstruction software, “LArSoft” Hit: location in time on a wire where signal is present Cluster: collection of hits that are near each other in time and space Prong: collection of clusters that occupy the same time and space Shower, Track, etc: higher reconstruction objects ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330ms) light collection none 09/09/2011 Teppei Katori, MIT

14 1. ArgoNeuT First US LArTPC neutrino experiment
- NuMI neutrino beamline (wideband 3GeV beam with long tail up to 20GeV) - 1.35E20 POT, dominated with anti-neutrino mode (~12k total neutrino event in TPC volume) - small fiducial mass (0.25ton), but using MINOS near detector as muon ranger ArgoNeuT demonstrates LArTPC neutrino analysis - powerful automated reconstruction software, “LArSoft” - the first physics result will be published soon 3D reconstructed CCQE candidate event ArgoNeuT cryostat volume 0.7 ton TPC volume 0.25 ton # channel 480 wire pitch 4 mm electronics style JFET (293K) max. drift length 0.5m (330ms) light collection none 09/09/2011 Teppei Katori, MIT

15 5. Future large LArTPC experiments 6. Conclusion
1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion 09/09/2011 Teppei Katori, MIT

16 2. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT Booster Target Hall Fermilab overview MicroBooNE MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

17 2. MicroBooNE kilo ton 150 ton Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT 150 ton kilo ton scalable technology MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

18 2. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements MicroBooNE ne appearance candidate MiniBooNE collaboration, PRL102(2009)101802 MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

19 5. Future large LArTPC experiments 6. Conclusion
1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion 09/09/2011 Teppei Katori, MIT

20 3. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 2.6m 2.3m 10.4m 09/09/2011 Teppei Katori, MIT

21 3. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) Liquid Argon Purity Demonstrator (LAPD) tank filters MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

22 3. Liquid Argon Purity Demonstrator (LAPD)
Goal: Achieve high purity LAr in large vessel (30 ton) without evacuation - Use warm Argon gas to “push out” all impurities. - Recirculation of gas through filters to achieve <50ppm impurities. - 2 Zeolite (water) filters and 2 copper (oxygen) filters - 4 purity monitors in the center and near the wall of the tank. - Vertically movable temperature probes (RTD) to measure temperature gradient. Liquid Argon Purity Demonstrator (LAPD) tank filters 09/09/2011 Teppei Katori, MIT

23 3. Liquid Argon Purity Demonstrator (LAPD)
Goal: Achieve high purity LAr in large vessel (30 ton) without evacuation - Use warm Argon gas to “push out” all impurities. - Recirculation of gas through filters to achieve <50ppm impurities. - 2 Zeolite (water) filters and 2 copper (oxygen) filters - 4 purity monitors in the center and near the wall of the tank. - Vertically movable temperature probes (RTD) to measure temperature gradient. Zeolite (molecular sieve), water filter ( m2/g!) Copper (activated copper coated alumina granule), oxygen filter molecular sieve molecule structure 09/09/2011 Teppei Katori, MIT

24 3. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) Liquid Argon Purity Demonstrator (LAPD) tank filters material test cryostat “Luke” MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

25 3. Material test cryostat “LUKE”
Goal: Test all components will be used inside of MicroBooNE cryostat - 250L cryostat is filled with high purity (<30 ppt) LAr, by Zeolite (water) and copper (oxygen) filter. - Airlock region can be accessed without opening cryostat, to insert test material. Then shaft goes down and impurity of test material is measured in air (gas analyzers) and liquid Argon region (purity monitor). material test cryostat “Luke” 09/09/2011 Teppei Katori, MIT

26 3. Material test cryostat “LUKE”
Goal: Test all components will be used inside of MicroBooNE cryostat - 250L cryostat is filled with high purity (<30 ppt) LAr, by Zeolite (water) and copper (oxygen) filter. - Airlock region can be accessed without opening cryostat, to insert test material. Then shaft goes down and impurity of test material is measured in air (gas analyzers) and liquid Argon region (purity monitor). test sample in Example of data, acrylic plate exposed to Ar gas electron life time impurity concentration 09/03/10 09/09/2011 Teppei Katori, MIT Teppei Katori, MIT

27 3. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) Cryogenic CMOS front end prototype (87K) MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

28 3. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) Wire plane prototype MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

29 3. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - light collection system behind the wire planes (it can trigger 40 MeV proton) MicroBooNE PMT test stand PMT unit TPB coated acrylic plate 128nm 450nm MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 90 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~9000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

30 3. MicroBooNE PMT system 9.7eV 3.0eV 128nm scintillation light
PMT unit 9.7eV 3.0eV TPB plate PMT Base 128nm scintillation light - Lquid Argon produce ~24,000 photon/MeV for MIP (500V/cm) - Vacuum UV light, Rayleigh scattering length l~70-90cm! (visible light l~1km!) - TPB (tetra-phenyl butadiene) can shift 128 nm vacuum UV to blue 420nm (130% efficiency!) 09/09/2011 Teppei Katori, MIT

31 3. MicroBooNE PMT system 128nm scintillation light
PMT unit TPB plate PMT Base vacuum evaporation 50% TPB brush plates 33% TPB brush plates TPB embedded PMT signal (mV) wave length (nm) Vacuum spectrometer result Deuterium lamp sample PMT grating vacuum area Vacuum spectrometer 128nm scintillation light - Lquid Argon produce ~24,000 photon/MeV for MIP (500V/cm) - Vacuum UV light, Rayleigh scattering length l~70-90cm! (visible light l~1km!) - TPB (tetra-phenyl butadiene) can shift 128 nm vacuum UV to blue 420nm (130% efficiency!) - 50%TPB+50%polystyrene mixture is brushed on acrylic place 09/09/2011 Teppei Katori, MIT

32 3. MicroBooNE PMT system Hamamatsu R5912-02mod
Meyer, NIMA621(2010)437 PMT unit TPB plate PMT Base Pt-undercoating PMT non coating PMT Hamamatsu R mod - 8” hemi-sphere 14 stages PMT (5E7 gain with ~1300V) - bi-alkali photo-cathode with Platinum undercoating to operate < 150 K 09/09/2011 Teppei Katori, MIT

33 3. MicroBooNE Path to large scale LArTPC experiment
- Booster neutrino beamline (wideband 800MeV beam with short tail up to 3GeV), 6.6E20POT - technological goal: path to large LArTPC, all parameters are improved from ArgoNeuT - physics goal: investigate MiniBooNE low energy excess, and cross section measurements - bigger volume (~71k nCCQE, 112k nCC in TPC volume, 6E20POT) - longer drift length (high purity LAr) - cold electronics (pre-amp, immersed in LAr) - finer wire pitch (40MeV proton track is ~1.5cm in LAr) - light collection system behind the wire planes (it can trigger 40 MeV proton) In a nutshell… MicroBooNE is a large volume high resolution active target neutrino detector MicroBooNE detector ArgoNeuT MicroBooNE cryostat volume 0.7 ton 150 ton TPC volume 0.25 ton 86 ton max. drift length 0.5m (330ms) 2.5m (1.5ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 wire pitch 4 mm 3 mm # wire plane 2 3 light collection none 30 of 8” PMT 09/09/2011 Teppei Katori, MIT

34 5. Future large LArTPC experiments 6. Conclusion
1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion 09/09/2011 Teppei Katori, MIT

35 4. MicroBooNE physics Event rate (BNB, 60 ton LAr volume, 6E20POT)
- High statistics neutrino cross section measurement with the high resolution detector - Precise CC channel measurements - Ds measurement through NC elastic interaction - Coherent pion production measurement - etc... reaction #event fraction CCQE CC nm+n−>m-+p 66319 45.0 NCEL NC nm+N−>nm+N 21395 14.5 resonance pion production nm+p−>m-+p+p+ 20359 13.8 nm+n−>m-+p+po 7710 5.2 nm+n−>m-+n+p+ 7365 5.0 nm+p−>nm+p+po 3634 2.5 nm+p−>nm+n+p+ 2297 1.6 nm+n−>nm+n+po 4510 3.1 nm+n−>nm+p+p- 2990 2.0 coherent nm+A−>m-+A+p+ 2895 nm+A−>nm+A+po 1867 1.3 total 143277 100.0 09/09/2011 Teppei Katori, MIT

36 4. MicroBooNE physics, n2NSRC
Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 JLab Hall A “big bite” correlated proton pair measurement 09/09/2011 Teppei Katori, MIT

37 4. MicroBooNE physics, n2NSRC
Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements? JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 Berge et al.(FNAL15ft), PRD18(1978)1367 MiniBooNE collaboration, PRD81(2010)092005 CCQE with muti-nucleon emission (MiniBooNE cannot tag each nucleons) contribution of pure CCQE Martini et al., PRC80(2009)065501 09/09/2011 Teppei Katori, MIT

38 4. MicroBooNE physics, n2NSRC
Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements? n2NSRC at MicroBooNE - Very distinct event topology “muon + 2 correlated protons emission” - High resolution LArTPC can measure 2 short proton tracks - Vertex activity might reveal the first time the role of 2NSRC on nuclear transition JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 Berge et al.(FNAL15ft), PRD18(1978)1367 MiniBooNE collaboration, PRD81(2010)092005 ArgoNeuT 2 tracks CCQE candidate in 3D (data) 09/09/2011 Teppei Katori, MIT

39 5. Future large LArTPC experiments 6. Conclusion
1. Introduction 2. MicroBooNE 3. MicroBooNE detector 4. MicroBooNE physics 5. Future large LArTPC experiments 6. Conclusion 09/09/2011 Teppei Katori, MIT

40 5. Long Baseline Neutrino Experiment (LBNE)
anode cathode LBNE, theta 13 and leptonic CPV measurement - LBNE will be located ~1300km from Fermilab - 750kW Main Injector is used - Large LArTPC is a candidate detector for LBNE ArgoNeuT MicroBooNE LAr40 cryostat volume 0.7 ton 150 ton 40k ton TPC volume 0.25 ton 86 ton 33k ton max. drift length 0.5m (330ms) 2.5m (1.5ms) 3.7m (2.3ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 ~266,000 wire pitch 4 mm 3 mm 5 mm # wire plane 2 3 light collection none 30 of 8” PMT TBD 09/09/2011 Teppei Katori, MIT

41 5. Long Baseline Neutrino Experiment (LBNE)
LBNE, theta 13 and leptonic CPV measurement - LBNE will be located ~1300km from Fermilab - 750kW Main Injector is used - Large LArTPC is a candidate detector for LBNE - 2 large LArTPC can fit in one gigantic cryostat ® Membrane cryostat LAr40 - Decline Tunnel - Air supply - Ventilation - Air exhaust 143m 33m ArgoNeuT MicroBooNE LAr40 cryostat volume 0.7 ton 150 ton 40k ton TPC volume 0.25 ton 86 ton 33k ton max. drift length 0.5m (330ms) 2.5m (1.5ms) 3.7m (2.3ms) electronics style JFET (293K) CMOS (87K) # channel 480 ~8,000 ~266,000 wire pitch 4 mm 3 mm 5 mm # wire plane 2 3 light collection none 30 of 8” PMT TBD 09/09/2011 Teppei Katori, MIT

42 5. Membrane cryostat  Stainless steel primary membrane
Ultra large cryostat - Future large LArTPC, such as LAr40 of LBNE, will use membrane cryostat - Known technology to carry liquid natural gas by tanker. Detector volume Purge, vacuum, LAr  Stainless steel primary membrane  Plywood board  Reinforced polyurethane foam  Secondary barrier  Reinforced polyurethane foam  Plywood board  Bearing mastic  Concrete covered with moisture barrier Insulation space #1 Purge, test gas, vacuum Insulation space #2 Purge, test gas, vacuum Concrete bathtub Ufer ground, heating 09/09/2011 Teppei Katori, MIT

43 5. Membrane cryostat Ultra large cryostat
- Future large LArTPC, such as LAr40 of LBNE, will use membrane cryostat - Known technology to carry liquid natural gas by tanker. worker 216,000m3 LNG tanker (~300 kt of LAr) 09/09/2011 Teppei Katori, MIT

44 5. Membrane cryostat Ultra large cryostat
- Future large LArTPC, such as LAr40 of LBNE, will use membrane cryostat - Known technology to carry liquid natural gas by tanker. LAPD Fermilab Lab F - Membrane cryostat wall section - Helium test shows no leak >10-8 cc/s Fermilab PC-4 - LAPD facility - LBNE35ton locates in a tunnel LBNE 35ton 09/09/2011 Teppei Katori, MIT

45 6. Conclusion LArTPC is a feasible candidate large detector for future long baseline neutrino oscillation experiment, such as LBNE ArgoNeuT is the first US LArTPC neutrino experiment, and successfully completed its data taking. MicroBooNE passed CD-2 review by Department of Energy. 150ton MicroBooNE is planned to take data from MicroBooNE is the necessary path for future large LArTPC and it has a rich physics program. Future large LArTPC cryostat R&D is started. 09/09/2011 Teppei Katori, MIT

46 MicroBooNE collaboration
Brookhaven National Laboratory Columbia University University of Cincinnati Fermi National Accelerator Laboratory Kansas State University Los Alamos National Laboratory Massachusetts Institute of Technology Michigan State University Princeton University Saint Mary's University of Minnesota Syracuse University University of Texas, Austin Yale University Дякую, Спасибо, Рахмат! 09/09/2011 Teppei Katori, MIT

47 back up 09/09/2011 Teppei Katori, MIT

48 3. MicroBooNE cryostat Non vacuum insulated cryostat
- MicroBooNE cryostat is not vacuum insulated (large scale vacuum insulation is expensive) - 16” of sprayed polyurethane insulation - keep dT<1.4K to avoid boiling of LAr at the wall 09/09/2011 Teppei Katori, MIT

49 Did God(s) create CMOS to work in LAr?!
3. MicroBooNE Veljko Radeka GLA2011 Did God(s) create CMOS to work in LAr?! gm/ID Transconductance//drain current At 77-89K, charge carrier mobility in silicon increases, thermal fluctuations decrease with kT/e, resulting in a higher gain, higher gm /I, higher speed and lower noise. 09/09/2011 Teppei Katori, MIT

50 4. Why Argon? Noble gas comparison
- lower boiling point is easier to handle - higher density has more energy deposit - longer wavelength is easier to detect - Xe>Kr>Ar>Ne>He but Xe and Kr are expensive 09/09/2011 Teppei Katori, MIT

51 4. MicroBooNE physics, Ds Neutral Current Elastic (NCE) event (23k in TPC volume, 6E20POT) - MiniBooNE: no proton-neutron separation below 350 MeV (proton Cherenkov threshold). - SciBooNE: hard to understand low energy protons (>200 MeV for analysis) . - LArTPC can measure low energy protons (~40MeV protons corresponds to Q2 ~0.08 GeV2). MiniBooNE collaboration, PRD82(2010)092005 H. Takei, Fermilab-Thesis BNL734 data ICARUS proton dQ/dx - lowest reconstructable proton is ~50 MeV MicroBooNE projected data points ICARUS collaboration PRD74(2006)112001 Ds, strange quark spin components in nucleon - Ds is Q2=0 limit of the isoscalar part of axial vector form factor of NCE events. - previous experiments (BNLE734, MiniBooNE) are limited Q2 > 0.4 GeV2. unmeasured Ahrens et al, PRD35(1987)785 09/09/2011 Teppei Katori, MIT

52 4. MicroBooNE physics, coherent pion production
Recent data of coherent pion productions - No charged current coherent pion production is observed. - Neutral current coherent pion production is observed. K2K collaboration, PRL95(2005)252301 SciBooNE collaboration, PRD78(2008)112004 MiniBooNE collaboration, PLB664(2008)41; PRD82(2010)092005 SciBooNE collaboration, PRD81(2009)033004; PRD81(2010)111102 Vertex activity - SciBooNE uses energy deposit around vertex (called vertex activity) to distinguish coherent and resonance pion production. - 3mm coordinate resolution of MicroBooNE allows fine pion measurement and vertex activity. SciBooNE nCCp+ sample vertex activity MicroBooNE expected events in TPC volume (6E20POT) events nCCQE 72k nCCp+ (resonance) 30k nCCp+ (coherent) 3k nNCpo (resonance) 14k nNCpo (coherent) 2k 09/09/2011 Teppei Katori, MIT

53 4. MicroBooNE physics, NuMI neutrinos
MicroBooNE receives neutrinos both from Booster Neutrino beam (BNB) and NuMI! - upgrade 700kW NuMI will have 6E20POT/yr. - 40k nCC event and 7.7k anti-nCC event from NuMI, 6E20POT. MicroBooNE detector 09/09/2011 Teppei Katori, MIT

54 4. MicroBooNE physics, hyperon production
MicroBooNE receives neutrinos both from Booster Neutrino beam (BNB) and NuMI! - upgrade 700kW NuMI will have 6E20POT/yr. - 40k nCC event and 7.7k anti-nCC event from NuMI, 6E20POT. Neutrino-Nucleon hyperon productions - High resolution detector allows hyperon measurements - Very low statistics (26 events) from ’70 bubble chambers L production measurements - Uniquely sensitive to anti-neutrino - No Pauli blocking - L polarization? MicroBooNE capability - We expect few 100s of Los in TPC volume, from NuMI, 6E20POT. Neutrino78(1978)37, PRL33(1975)1446 ArgoNeuT Lo production (MC) 09/09/2011 Teppei Katori, MIT

55 4. MicroBooNE physics, n2NSRC
Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 Particle Zoo© neutrinos charged leptons coolness 09/09/2011 Teppei Katori, MIT

56 - anti-nm CC event with backward protons
4. MicroBooNE physics, n2NSRC Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 Berge et al.(FNAL15ft), PRD18(1978)1367 Fermilab 15ft bubble chamber average number of tracks - anti-nm CC event ® 6.20 ± 0.11 - anti-nm CC event with backward protons ® 7.42 ± 0.64 09/09/2011 Teppei Katori, MIT

57 4. MicroBooNE physics, n2NSRC
Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 Berge et al.(FNAL15ft), PRD18(1978)1367 electron scattering - long arm spectrometers neutrino scattering - active target, vertex detector target detectors target and detector ? vertex activity 09/09/2011 Teppei Katori, MIT

58 4. MicroBooNE physics, n2NSRC
Cartoon of inside of nucleus 2 Nucleon Short Range Correlation (2NSRC) - for heavy nuclei, ~20% of nucleons are under SRC, and proton-neutron pairs dominate (~90%). - 2 nucleons are kinematically correlated. neutrino 2NSRC (n2NSRC) - Growing interest on this subject, why not with neutrinos!? - Never confirmed in neutrino scattering - Unique place to study the role of 2NSRC on nuclear transition - Responsible for MiniBooNE absolute xs measurements? JLab Hall A collabo. Science320(2008)1476 JLab Hall A collabo. PRL99(2007)072501 Berge et al.(FNAL15ft), PRD18(1978)1367 MiniBooNE collaboration, PRD81(2010)092005 Recent CCQE results 09/09/2011 Teppei Katori, MIT


Download ppt "4 years resident of Ukrainian Village, Chicago outline 1. Introduction"

Similar presentations


Ads by Google