Presentation is loading. Please wait.

Presentation is loading. Please wait.

Panel: New Opportunities in High Performance Data Analytics (HPDA) and High Performance Computing (HPC) The 2014 International Conference.

Similar presentations

Presentation on theme: "Panel: New Opportunities in High Performance Data Analytics (HPDA) and High Performance Computing (HPC) The 2014 International Conference."— Presentation transcript:

1 Research@SOIC Panel: New Opportunities in High Performance Data Analytics (HPDA) and High Performance Computing (HPC) The 2014 International Conference on High Performance Computing & Simulation (HPCS 2014) July 21 – 25, 2014 The Savoia Hotel Regency Bologna (Italy) July 22 2014 Geoffrey Fox School of Informatics and Computing Digital Science Center Indiana University Bloomington

2 Research@SOIC SPIDAL (Scalable Parallel Interoperable Data Analytics Library) 2

3 Research@SOIC Introduction to SPIDAL Learn from success of PetSc, Scalapack etc. as HPC Libraries Here discuss Global Machine Learning GML as part of SPIDAL (Scalable Parallel Interoperable Data Analytics Library) – GML = Machine Learning parallelized over nodes – LML = Pleasingly Parallel; Machine Learning on each node Surprisingly little packaged scalable GML – Apache: Mahout low performance and MLlib just starting – R largely sequential (best for local machine learning LML) Our experience based on four big data algorithms – Dimension Reduction (Multi Dimensional Scaling) – Levenberg-Marquardt Optimization – Clustering: similar to Gaussian Mixture Models, PLSI (probabilistic latent semantic indexing), LDA (Latent Dirichlet Allocation) – Deep Learning 3

4 Research@SOIC Some Core Machine Learning Building Blocks 4 AlgorithmApplicationsFeaturesStatus//ism DA Vector Clustering Accurate ClustersVectorsP-DMGML DA Non metric Clustering Accurate Clusters, Biology, WebNon metric, O(N 2 )P-DMGML Kmeans; Basic, Fuzzy and Elkan Fast ClusteringVectorsP-DMGML Levenberg-Marquardt Optimization Non-linear Gauss-Newton, use in MDS Least SquaresP-DMGML SMACOF Dimension Reduction DA- MDS with general weights Least Squares, O(N 2 ) P-DMGML Vector Dimension Reduction DA-GTM and OthersVectorsP-DMGML TFIDF Search Find nearest neighbors in document corpus Bag of “words” (image features) P-DMPP All-pairs similarity search Find pairs of documents with TFIDF distance below a threshold TodoGML Support Vector Machine SVM Learn and ClassifyVectorsSeqGML Random Forest Learn and ClassifyVectorsP-DMPP Gibbs sampling (MCMC) Solve global inference problemsGraphTodoGML Latent Dirichlet Allocation LDA with Gibbs sampling or Var. Bayes Topic models (Latent factors)Bag of “words”P-DMGML Singular Value Decomposition SVD Dimension Reduction and PCAVectorsSeqGML Hidden Markov Models (HMM) Global inference on sequence models VectorsSeq PP & GML

5 Research@SOIC Some General Issues Parallelism 5

6 Research@SOIC Some Parallelism Issues All use parallelism over data points – Entities to cluster or map to Euclidean space Except deep learning which has parallelism over pixel plane in neurons not over items in training set – as need to look at small numbers of data items at a time in Stochastic Gradient Descent Maximum Likelihood or  2 both lead to structure like Minimize sum  items=1 N (Positive nonlinear function of unknown parameters for item i) All solved iteratively with (clever) first or second order approximation to shift in objective function – Sometimes steepest descent direction; sometimes Newton – Have classic Expectation Maximization structure 6

7 Research@SOIC Parameter “Server” Note learning networks have huge number of parameters (11 billion in Stanford work) so that inconceivable to look at second derivative Clustering and MDS have lots of parameters but can be practical to look at second derivative and use Newton’s method to minimize Parameters are determined in distributed fashion but are typically needed globally – MPI use broadcast and “All.. Collectives” – AI community: use parameter server and access as needed 7

8 Research@SOIC Some Important Cases Need to cover non vector semimetric and vector spaces for clustering and dimension reduction (N points in space) Vector spaces have Euclidean distance and scalar products – Algorithms can be O(N) and these are best for clustering but for MDS O(N) methods may not be best as obvious objective function O(N 2 ) MDS Minimizes Stress  (X) =  i~ 0.1 There is quite a lot of work on clever methods of reducing O(N 2 ) to O(N) and logs – This is extensively used in search but not in “arithmetic” as in MDS or semimetric clustering – Arithmetic similar to fast multipole methods in O(N 2 ) particle dynamics 8

9 Research@SOIC Some Futures Always run MDS. Gives insight into data – Leads to a data browser as GIS gives for spatial data Claim is algorithm change gave as much performance increase as hardware change in simulations. Will this happen in analytics? – Today is like parallel computing 30 years ago with regular meshs. – We will learn how to adapt methods automatically to give “multigrid” and “fast multipole” like algorithms Need to start developing the libraries that support Big Data – Understand architectures issues – Have coupled batch and streaming versions – Develop much better algorithms Please join SPIDAL (Scalable Parallel Interoperable Data Analytics Library) community 9

Download ppt "Panel: New Opportunities in High Performance Data Analytics (HPDA) and High Performance Computing (HPC) The 2014 International Conference."

Similar presentations

Ads by Google