Download presentation

Presentation is loading. Please wait.

Published byAdrian Rose Modified over 2 years ago

1
P ROBABILITY

2
T HE PROBABILITY OF AN EVENT E

3
E X 1) Two fair dice are rolled. What is the probability that the sum of the numbers on the dice is 10?

4
E X 2) (1) For a fair die, what is the probability of an odd number? (2)Suppose that a die is loaded so that the numbers 2 through 6 are equally likely to appear, but that 1 is three times as likely as any other number to appear. What is the probability of an odd number?

5
T HE PROBABILITY OF THE COMPLEMENT EVENT Let E be an event. The probability of E', the complement of E, satisfies

6
E X 3) B IRTHDAY P ROBLEM Find the probability that among n persons, at least two people have same birthdays. Assume that all months and dates are equally likely, and ignore Feb. 29 birthdays.

7
T HE PROBABILITY OF THE UNION The probability of the event A and B : The probability of the event A or B :

8
E X 4) Two fair dice are rolled. (1) What is the probability that a sum of 7 or 11 turns up? (2) What is the probability of getting doubles (two dice showing the same number) or a sum of 6?

9
C ONDITIONAL P ROBABILITY The conditional probability of A given by B is

10
E X 5) A pointer is spun once on a circular spinner. The probability assigned to the pointer landing on a given integer is the ratio of the area of the corresponding circular sector to the area of the whole circle, as given in the table: (1) What is the probability of the pointer landing on a prime number? (2) What is the probability of the pointer landing on a prime number, given that it landed on an odd number? x 123456 P( x ).1.2.1.3.2

11
E X 6) Suppose that city records produced the following probability data on a driver being in an accident on the last day of a Memorial Day weekend: (1) Find the probability of an accident, rain or no rain. (2) Find the probability of rain, accident or no accident. (3) Find the probability of an accident and rain. (4) Find the probability of an accident, given rain Accident ANo Accident A’ Totals Rain R.025.335.360 No Rain R’.015.625.640 Totals.040.960 1.000

12
P RODUCT R ULE A and B are independent events if. If A and B are independent, then

13
E X 7) T ESTING FOR I NDEPENDENCE In two tosses of a single fair coin, show that the events “A head on the first toss” and “A head on the second toss” are independent.

14
E X 8) T ESTING FOR I NDEPENDENCE A single card is drawn from a standard 52-card deck. Test the following events for independence. A=the drawn card is a spade B=the drawn card is a face card

15
A=the drawn card is a spade B=the drawn card is a face card

Similar presentations

OK

Probability IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe Addition.

Probability IIntroduction to Probability ASatisfactory outcomes vs. total outcomes BBasic Properties CTerminology IICombinatory Probability AThe Addition.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on non ferrous minerals for sale Ppt on suspension type insulators of electricity Ppt on different occupations in the medical field Ppt on types of plants for grade 1 Ppt on electricity for class 10th physics Ppt on sources of energy for class 8th december Ppt on file system in unix run Skill based pay ppt online Ppt on modern technology in education Ppt on nuclear family and joint family advantages