Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quattro Application Guidance Webinar November 6, 2009 Presented by Kevin Stein Adept Applications.

Similar presentations


Presentation on theme: "Quattro Application Guidance Webinar November 6, 2009 Presented by Kevin Stein Adept Applications."— Presentation transcript:

1 Quattro Application Guidance Webinar November 6, 2009 Presented by Kevin Stein Adept Applications

2 Agenda USDA Platforms Ingress Protection Application Guidance Questions

3 What’s new? USDA (meat & poultry) –Accepted –September 24 th, 2009 USDA (dairy) –In process –Pending 1 st article World’s fastest robot –

4 Quattro s650HS Hygienic Sanitary High Speed

5 USDA – what is it? USDA - 2 divisions –Meat and Poultry –Diary Materials Design Seals

6 USDA Materials FDA –Responsible for material compliance –FDA CFR Title 21 Standards –ISO 14159, –3A –NSF –AMI

7 USDA - Design Tenacity – Rigorous design lifecycle Drip, drain, drawn Features –No cracks, crevices Width must be 2x depth –Radii ¼” or 0.050” chamfer –Surface Finish 32 micro inch or better –Coatings

8 USDA - Seals Controlled Compression –Prevent Ingress / Egress Compliant material –CFR Title 21 Rub test –No particulate All external hardware is sealed, Everything!

9 Quattro Changes Phasing in new parts –Standard Quattro robots New inserts and bushings Stainless Steel balls Springs won’t fall off –USDA AIB Machined casting features Cable seal kit

10 Quattro USDA components

11 Quattro 650H vs. 650HS List Price $ 49,985 Standard Current AIB Alpha drive oil Available now List Price $ 54,735 USDA Machined AIB Alpha Drive FDA grease Available around March 2010 Subject to change without notice!

12 USDA - Overview Bacteria is the enemy! –Quattro 650HS offers USDA acceptance IP wash down Chemical resistance Tool less disassembly Ease of inspection –Designed to improve food safety and quality for consumers –Cleanliness is not just nice to have. It can literally be a matter of life and death for both customer and company. –Choosing Quattro lowers manufacturing costs while improving food safety.

13 Agenda USDA Platforms Ingress Protection Application Guidance Questions

14 Platforms What are the options –Current 60D 4:1 185D –Coming soon ( Early next year) P30 (2 nd iteration in process, control algorithm needs improvement) P31 ( available January) P32 ( available in Q4FY10) P34 ( available in Q4FY10)

15 Platforms – Decision Tree Standard Platforms Does the application require more than 45 degrees? –NO  Use the 60 degree –YES  Does the application require hygienic wash-down? –NO  Use the 4:1 –YES  Use the 185 degree For 3 rd generation platforms (P31-P34) Does the application require more than 45 degrees? –NO  Use the P31 –YES  Does the application require more than 90 degrees? NO  Use the P32 YES  Use the P34

16 Platforms - P30 Fixed Platform –3-axis Quattro (no rotation) –25x stiffness improvement –10x higher payload inertia –As seen at Pack Expo 2009

17 Platforms – P31 Rotation range +/ ˚ Part Number –

18 Platforms – P32 Rotation range +/- 92.5˚

19 Platforms – P34 Rotation range +/- 185˚

20 Agenda USDA Platforms Ingress Protection Application Guidance Questions

21 Wash Down – IP rating Ingress Protection (IP xx) –Entire robot is IP66 protected from solid objects – dust, particulate provides protection from liquids –Water sprayed from any direction –Platform is IP67 Protected from solid objects Protected against immersion 15cm to 1m

22 Chemicals encountered We cannot test all chemicals! Dura Foam 263 Chloro Clean 269 Multiquat 455 Liquid Fury Enrich 299 Potassium Hydroxide (<15%), Sodium Tripolyphosphate <15%), Proprietary (<5%) Sodium Hypochlorite (<5%) Sodium Hydroxide (<15%), Sodium Hypochlorite (<5%) Alkyl dimethyl benzyl ammonium chloride (3%), Octyl decyl dimethl ammonium chloride (2.25%), Sodium Tripolyphosphate (<14%), Sodium Metasilicate Anhydous (<20%), Triehenolamine ( <10%) Sodium Hydroxide (<10%), Sodium Hyposhlorite (<8%)

23 Agenda USDA Platforms Ingress Protection Application Guidance Questions

24 Robot Performance Best Acceptable Performing long motions, at the top of the workspace, the inner arms have to travel the full range of motion, less efficient. When long moves are performed lower in the workspace the inner arms travel a shorter distance to reach the same position, more efficient.

25 Robot Performance Long move at top of the workspace Long move lower in the workspace

26 Platform Stiffness Best Acceptable Good Each platform is the most stable closer to the top, less flex in outer arms. As the platform moves lower in the workspace the outer arms become less stable. Therefore, the platform, positional repeatability, can be influenced by fast motions/ payloads

27 Platform Stiffness More StableLess Stable

28 Performance and Stiffness Application dependant –Best of both Middle of cylinder mm from top of workspace –Stiffness 60D, P31 Top of workspace –Performance Long motions lower in workspace, near frustum

29 Dynamic Effects Moving in X, Y or Z tool orientations will influence ALL other axes of motion. This effect is more pronounced in some regions of the workspace than others. The most pronounced effect is motions of X, Y, or Z affecting the orientation of the flange, specifically theta. At high changes of acceleration, this effect can be quite visible. Platform “swim” is defined as undesired rotation of the flange during a motion. –swim can be reduced by decreasing the deceleration of the pick move and the acceleration of the depart move. –The swim effect is also sensitive to the orientation of the flange. Operating at orientations that are closest to world ROLL 180 (platform closest to square) reduces this effect.

30 Location effect on stiffness The Quattro robot platform is inherently more stiff with tool orientation at locations closer to the world X axis than at locations further out in the world Y direction. The locations where the robot is stiffer and more accurate are within the cylindrical region of the workspace (higher up in the workspace) along the X direction of travel.

31 Outer Arms Manufacturing Tolerances –Build process allows for variation –Does not effect performance! Taught locations –Use caution when Outer arms are replaced Take care not to swap arms –When arms are swapped Locations might need to be re-taught

32 Application Guidance Overview Optimal performance is along world X direction Platform is most rigid at top of cylindrical workspace Robot is faster lower in the workspace, bottom of cylindrical section Platform stiffness is the greatest when theta rotation is kept to a minimum Combining these points puts you in the sweet spot of the workspace.

33 Agenda USDA Platforms Ingress Protection Application Guidance Questions

34 Questions?


Download ppt "Quattro Application Guidance Webinar November 6, 2009 Presented by Kevin Stein Adept Applications."

Similar presentations


Ads by Google