Presentation is loading. Please wait.

Presentation is loading. Please wait.

Perspectives of Plasma-Wakefield Acceleration

Similar presentations

Presentation on theme: "Perspectives of Plasma-Wakefield Acceleration"— Presentation transcript:

1 Perspectives of Plasma-Wakefield Acceleration
basics perspectives state-of-the-art brief overview of various projects F. Grüner, Universität Hamburg & Center for Free-Electron Laser Science

2 basic principle of any accelerator
one needs an electric field… charge separation + - electron …charged particles are then accelerated

3 accelerators can be quite large…
First X-ray FEL (2009): Stanford, USA kilometer long!!!!....

4 but also quite small… lab setup of a Laser-Plasma-Accelerator at MPQ (S. Karsch et al.) pulse of a high- Power laser plasma cell: cm short!!!!....

5 plasma wakefield acceleration
laser pulse with relativistic intensity typical length scale = plasma wavelength wake plasma Ez ~ TV/m ~ 5 fs PIC simulation (M. Geissler) plasma (capillary) high-intensity laser: ~ 5 J / 25 fs

6 perspectives EuroNNAc CERN, May 2011, top 5 goals, among them - „table-top“ XFEL - 10 GeV stage - stable operation 24/7 brilliant X-ray sources „at home“, added values: - intrinsic synchronization (driver laser, X-ray pulse, few fs) - compact enough for hospitals: medical applications - higher peak currents (above 20 pC/4 fs) high-energy physics - TeV machine - sure enough, many open questions (emittance growth, staging, timing/pointing for ~100 stages, efficiency,…..) ~ 16 m Leemans & Esarey, Physics Today, March 2009

7 state of the art before 2000: theory on LWFA, experiments with „thermal“ energy spectra 2000 theory of bubble acceleration (Meyer-ter-Vehn & Pukhov, MPQ): needs stronger laser 2004 first experimental results, peaked energy spectra (LBNL, LOA, RAL, Nature) 2006 Berkeley lab reaches 1.0 GeV (W. Leemans et al., Nature Physics) 2008 stability improvement (e.g., J. Osterhoff et al., PRL) 2009 first laser-driven soft X-ray undulator source (F. Grüner et al., Nature Physics) 2010-… diagnostics: bunch length, emittance, position behind laser new injection schemes: down-ramp, counter-propagating lasers, ionization, shock-front courtesy of S. Karsch

8 open questions how does it all work? key questions - emittance growth
- energy spread - injection - beam loading - exit into vacuum - staging scalable? selft-consistent analytical treatments too complex → PIC codes but: PIC codes suffer from - idealistic modelling - numerical heating - resolution issues (space charge) open questions

9 PWA worldwide Prominent LWFA results Imperial College Rutherford Lab
Strathclyde Oxford Lund Düsseldorf Jena Dresden Munich Hamburg Berkeley Lincoln Ann Arbor Austin Livermore LOA JAEA, Nara Frascati APRI Bejing Shanghai

10 research clusters in Germany
LMU, MPQ MBI Düssel- dorf Jena HZDR DESY, UHH/CFEL name start run time partners TransRegio 18 2004 3 x 4 years Düsseldorf, Jena, LMU, MPQ, MBI MAP Cluster of Excellence 2006 5+1 years follow-up proposal 2011 LMU, MPQ, TUM Helmholtz Association: ARD 2011 , then PoF3 HZDR, DESY, HI Jena, UHH, CFEL CALA new university institute building ready, start 2013 LMU, TUM

11 Düsseldorf (Oswald Willi et al.)
lasers 10 TW TW TW (25 fs) all synchronized planned upgrades: 100 → 200 TW; XPW (1012 contrast) current electron beams gas jets: 330 MeV gas targets (5-15 mm): stable 110 MeV research testing microchips for outer space staging of plasma accelerators theory + simulations Düssel- dorf

12 Jena (Malte Kaluza et al.)
lasers JETI: 32 TW (25 fs) on target, plasma mirrors for >1012 contrast planned upgrade: J current electron beams 300 MeV energy spread 1-2 % charge 1-15 pC research light sources (THz, betatron, undulator) cell irradiation e-beam diagnostics (with MPQ) highlight direct observation of electrons inside bubble Jena M. Kaluza et al., PRL 2010 A. Buck et al., Nature Phys. (2011)

13 Max-Born Insitute (Berlin) (Matthias Schnürer et al.)
lasers 100 TW (25 fs) coupled with 30 TW (45 fs) current electron beams so far ion acceleration electrons start in 2012 research (plasma) pump (ion/photon) probe experiments staging of plasma accelerators highlight record efficiency for laser into ion energy MBI

14 HZDR (Dresden) (Ulrich Schramm et al.)
lasers 150 TW (25-30 fs) upgrade: 500 TW (25-30 fs), PW end of 2013 current electron beams so far ion acceleration electron acceleration started; joint experiments with DESY/UHH research injection of external ELBE beam (100 fs) HZDR

15 ATLAS: 100 TW (25 fs, Ti:Sapph) LWS-20: 16 TW (8 fs, OPCPA)
LMU/MPQ (Munich) (S. Karsch, L. Veisz, F. Grüner, et al.) lasers ATLAS: 100 TW (25 fs, Ti:Sapph) LWS-20: 16 TW (8 fs, OPCPA) planned upgrades: LWS-100 (5 fs) ATLAS-3000, PFS: 5J/5fs/1kHz (in CALA) current electron beams LWS-20: MeV, 5-6 fs (measured) ATLAS: >500 MeV, >100 pC research e-beam diagnostics (bunch length, emittance) light sources (undulator, table-top FEL design, medical imaging) theory + simulation highlight highly stable MeV electrons first laser-driven soft X-ray undulator source LMU, MPQ M. Fuchs,…, J. Osterhoff, …,S. Karsch, F. Grüner, Nature Phys. 5, 826 (2009)

laser March 2013: 200 TW (5J / 25 fs) planned projects combining modern accelerators with PWA: beam-driven self-modulation (PITZ) transformer ratio studies (PITZ+FLASH) external injection (REGAE+FLASH) cooperations ARD (Dresden+Jena) MAP SLAC + Berkeley MBI MPP JAI DESY, UHH, CFEL

17 summary PWA emerging field: ultra-high gradients + ultra-short bunches
perspectives: compact light sources, high-energy colliders….. still many open question: beam quality… increasing national and international activities merging with conventional, modern accelerators

Download ppt "Perspectives of Plasma-Wakefield Acceleration"

Similar presentations

Ads by Google