Download presentation

Presentation is loading. Please wait.

Published byPhebe McGee Modified over 2 years ago

1
Heavy-Flavor Interactions in Medium Ralf Rapp Cyclotron Institute + Dept. of Physics & Astronomy Texas A&M University College Station, TX USA Workshop on Heavy-Quark Physics in Heavy-Ion Collisions ECT* (Trento, Italy), 16.-20.03.15

2
1.) Introduction: A “Calibrated” QCD Force Vacuum charm-/bottomonium spectroscopy well described Confinement ↔ linear part of potential non-perturbative treatment in medium lattice QCD, potential/T-matrix approach, AdS/CFT, … relate quarkonia kinetics and heavy-flavor diffusion [Kaczmarek et al ‘03] V [½ GeV] r [½ fm]

3
1.2 Objectives with Heavy Flavor in URHICs Determine modifications of QCD force in medium + infer consequences for the many-body system Open heavy-flavor diffusion: Brownian motion - Scattering rates in QGP: widths, quasiparticles? (m Q T) - Transport/thermalization: type of interaction (non/pert.,dofs, …) Quarkonia kinetics - Screening of confining (≥T c ?) + Coulomb (≥2T c ?) force - ϒ states: sequential melting - ψ states: sequential recombination

4
1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions Outline

5
2.1 Free and Internal Energy in Lattice QCD “strong” QQ potential, U = ‹H int › large m Q ~ U 1 (∞,T)/2 - - F 1 (r,T) = U 1 (r,T) – T S 1 (r,T) “weak” QQ potential small m Q ~ F 1 (∞,T)/2 F, U, S thermodynamic quantities Entropy: many-body effects Free Energy Internal Energy

6
2.2 Reconstructed Potential from Lattice QCD real part ~ singlet free energy imaginary part ~ HTL perturbative strongly coupled QGP? Real Part Imaginary Part [Burnier et al ’14] static potential from Wilson loop correlator:

7
Lippmann-Schwinger equation In-Medium Q-Q T-Matrix: - 2.3 Thermodynamic T-Matrix in QGP thermal 2-particle propagator: selfenergy: In-medium potential V? QQ q,g = [Cabrera+RR ’06, Riek+RR ‘10]

8
2.3.2 Free Energy from T-Matrix Key ingredients: imaginary parts + their dependence heavy-quark selfenergies from previous T-matrix calculations [S.Liu+RR in progress ] Euclidean T-matrix in static limit Spectral Function Free Energy [S.Liu+RR ’15] [Beraudo et al ’08]

9
2.3.3. Free + Internal Energy from T-Matrix remnant of long-range “confining” force in QGP smaller in-medium quark mass relative to internal energy 1.2 T c 1.5 T c 2 T c U F V lattice data r [fm] potential ansatz:

10
2.3.4 Brueckner Theory of Heavy Flavor in QGP 2-body potential QQ T-matrix Qq T-matrix Q → Q 0-modes Quark selfenergy QQ evolution (rate equation) Q spectra + v 2 (Langevin) spectral fcts./ eucl. correlat. quark-no. susceptibility lattice data exp. data Input Process Output Test - - lattice-QCD free energy

11
1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions Outline

12
3.1 Heavy-Light Scattering Amplitudes “confining” force induces “Feshbach resonances” in Qq T-matrix strength comparable to internal-energy (U) potential c-q - New Potential V U-Potential

13
3.2 Charm-Quark Relaxation Rates heavy-light T-matrix → HQ transport: c [1/fm] c ≈ 3 fm/c close to T c at low p 3-mom. + temperature dependence reflect core properties of QCD! Relaxation Rate Diffusion Coefficient p [GeV] [S.Liu+RR in prep]

14
3.3 D-Meson Transport in Hadronic Matter consistent with: - unitarized HQET (pion gas) - recent works in HRG using similar methods effective D-h scattering amplitudes [He,Fries+RR ’11] D [fm -1 ] [Cabrera et al ‘11] hadron gas at ~T c : D ≈ 10fm/c D [fm -1 ] [Tolos+Torres-Ricon ’13, Ozvenchuk et al ‘14]

15
3.4 Summary of Charm Diffusion in Matter shallow minimum near T c Quark-Hadron continuity? Hadronic Matter vs. QGP vs. Lattice QCD [He et al ’11, Riek+RR ’10, Ding et al ‘11, Gavai et al ‘11] AdS/QCD [Gubser ‘07] D s =T/m

16
| | 3.5 Heavy-Flavor Transport in URHICs no “discontinuities” in interaction diffusion toward T pc and hadronization same interaction (confining!) initial cond. (shadowing, Cronin), pre-equil. fields c-quark diffusion in QGP liquid c-quark hadronization D-meson diffusion in hadron liquid c D [fm/c] 0 0.5 5 10

17
3.6 Heavy-Flavor Electrons at √s=62GeV uncertainties in pp baseline interplay of Cronin (pA!) + collective flow sizable medium effects in R CP + v 2

18
1.) Introduction 2.) Heavy-Quark Interactions in QGP 3.) Open Heavy-Flavor Transport 4.) Quarkonia: ψ Puzzle(s) 5.) Conclusions Outline

19
4.) Charmonium: (3686) easily dissociated in hadronic matter: , ,... + →DD, → D med D med [Grandchamp +RR ‘02 ] hadronic dissociation at SPS important ingredient for transport models [Sorge et al ‘97, …] [PBM+Stachel ‘00]

20
4.2 Charmonia in d+Au Fireball construct fireball + evolve rate equat. → suppression from hot medium similar in spirit to comover approach formation time effects?! [X.Du+RR, in prep ] [Ferreiro ‘14 ] [Y.Liu, Ko et al ‘14 ]

21
4.3.1 Sequential Recombination of Charmonia in AA smaller binding → smaller T diss → forms later than J/ψ ! harder blast wave for ψ formed at later times (hadronic phase!) [X.Du+RR, in prep ] Time Evolution p T Spectra

22
4.3.2 Sequential Recombination vs. Dissociation ψ blast wave fills p t = 3-6 GeV region, primordial for p t > 6 GeV helps explain CMS double-ratio puzzle more complex in practice … [X.Du+RR, in prep ] ψ / J/ψ Double Ratio R AA ψ / R AA J/ψ Nuclear Modification Factor

23
5.) Conclusions Heavy-quark potential in QGP from lQCD F: Bayesian, T-matrix - Large imaginary parts - Remnants of confinement generate strong coupling “Critical” consequences for heavy-flavor diffusion Continuity + minimum of transport coefficient through T pc No principal difference between diffusion forces + hadronization Sequential recombination of charmonia?! (↔ pA)

24
3.) Quarkonium Transport in Heavy-Ion Collisions J/ D D - c - c [PBM+Stachel ’00,Thews et al ’01, Grandchamp+RR ‘01, Gorenstein et al ’02, Ko et al ’02, Andronic et al ‘03, Zhuang et al ’05, Ferreiro et al ‘11, …] J/ + g c + c + X ← → - Inelastic Reactions: detailed balance: Theoretical Input: Transport coefficients - chemical relaxation rate - equililbrium limit N eq ( B, m c *, c eq ) Phenomenological Input: - J/ , c, ’+c,b initial distributions [pp, pA] - space-time medium evolution [AA: hydro,...] Rate Equation: Observables

25
c from fixed cc number: interplay of m c * and constrain spectral shape by lattice-QCD correlators 3.1 Thermal Charmonium Properties mc*mc* BB (a) Equilibrium number: - q (b) Inelastic Width controlled by s (parameter)

26
3.3 Inclusive J/ at SPS + RHIC Fix two main parameters: s ~0.3, charm relax. c eq = 4(2) fm/c for U(F) vs. ~5(10) from T-matrix Strong Binding (U) Weak Binding (F) [Zhao+RR ‘10]

27
3.4 J/ Excitation Function: BES at RHIC [Grandchamp +RR ’02 ] suppression pattern varies little (expected from transport) quantitative pp + pA baseline critical to extract systematics PHENIX (forward y) STAR (central y)

28
3.5 J/ Predictions at LHC regeneration becomes dominant uncertainties in cc +shadowing [Zhao+RR ‘11 ] low p T maximum confirms regeneration too much high-p T suppression?

29
3.6 (1S) and (2S) at LHC sensitive to color-screening + early evolution times clear preference for strong binding (U potential) similar results by possible problem in rapidity dependence (1S) → (2S) → [Grandchamp et al ’06, Emerick et al ‘11] Weak Binding Strong Binding [Strickland ‘12 ]

30
3.7 Summary of Phenomenology Quarkonium discoveries in URHICs: - increase of J/ R AA SPS, RHIC → LHC - low-p T enhancement - sizable v 2 - increasing suppression of ’ ( B ’ ~ B J/ ) Implications - T 0 SPS (~230) < T diss (J/ , ’) < T 0 RHIC (~350) < T 0 LHC (~550) ≤ T diss ( ) - confining force screened at RHIC+LHC - marked recombination of diffusing charm quarks at LHC Fair predictive power of theoretical modeling - based on description of SPS+RHIC with 2 main parameters

31
3.2.2 J/ at LHC: v 2 further increase at mid-y [He et al ’12 ]

32
3.1.2 J/ p T Spectra + Elliptic Flow at RHIC small v 2 limits regeneration, but does not exclude it (strong binding) shallow minimum at low p T high p T : formation time, b feeddown, Cronin

33
3.2.2 D-Meson Thermalization at LHC to be determined…

34
3.3.4 Time Evolution of J/ at LHC finite “cooking-time” window, determined by inelastic width [Zhao+RR ‘11 ] Strong Binding (U) Weak Binding (F)

35
4.3 J/ at Forward Rapidity at RHIC [Zhao+ RR ‘10]

36
3.2 Incomplete c-Quark Thermalization regeneration sensitive to charm-quark spectra [Song,Han, Ko ‘12 ] [Zhao+RR ‘11] Relaxation time ansatz: N eq ( ) ~ N therm ( ) · [1-exp(- / c eq )] Microscopic Calculation Impact on Regeneration

37
3.6.1 Heavy-Flavor Electrons at √s=62GeV importance of flow + Cronin effect at lower energies Hydro Tune

Similar presentations

OK

Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.

Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Nouns for kids ppt on batteries Ppt on wifi technology free download Ppt on obesity prevention Ppt on shipping industry in india Slides for ppt on robotics and automation Ppt on bank lending policies Ppt on business etiquettes training wheels Ppt on electricity for class 10th result Ppt on brand management Ppt on polynomials for class 8