Download presentation

Presentation is loading. Please wait.

Published byAnnabella Small Modified about 1 year ago

1
STAT 101: Data Analysis and Statistical Inference Professor Kari Lock Morgan kari@stat.duke.edu

2
STAT 101: Day 1 Introduction to Data 1/11/12 Syllabus, Course Overview Why Statistics? Data Cases and Variables Categorical and Quantitative Variables Section 1.1

3
Sakai Course Website: https://sakai.duke.edu/portal/site/STAT101_Spring12 Syllabus available online Lecture slides available online

4
Required Course Materials Textbook: Statistics: Unlocking the Power of Data by Lock, Lock, Lock Morgan, Lock, and Lock To be handed out in lab tomorrow Clicker: i>clicker – Available at the bookstore, Amazon, or from previous students – $43 at the bookstore, $20 used on Amazon – Need by 1/30 Calculator – basic calculator is fine – need a non-cell phone calculator

5
Support My Office Hours: (in Old Chemistry 216) – 3 – 5 pm Wednesday – 1 – 3 pm Friday – or by appointment Statistics Education Center: – 4 – 9 pm Sunday – Thursday in Old Chem 211A Email: kari@stat.duke.edu or your TAkari@stat.duke.edu

6
Grade Breakdown Clicker Questions10% Homework15% Projects (2 10%)20% Midterm Exams (2 15%) 30% Final Exam25% Grades ≥ 90 are guaranteed at least an A- Grades ≥ 80 are guaranteed at least a B- Grades ≥ 70 are guaranteed at least a C- Grades ≥ 60 are guaranteed at least a D-

7
Clickers You need to purchase an i>clicker Clicker grading will begin 1/30 Review “Quiz” Questions: – Credit only for answering correctly – Goal: motivate you to keep up with the material New Questions: – Credit simply for clicking in – Goal: motivate you to think actively about new material as it is being presented

8
Class Year What is your class year? (a) First-Year (b) Sophomore (c) Junior (d) Senior (e) Graduate student

9
Major Your primary major (or potential future major) best falls under the category… (a) Natural Sciences (b) Arts and Humanities (c) Social Sciences (d) Math/Statistics/CS (e) Other

10
Homework Weekly homework due Collaboration and discussion encouraged, but write-up must be done on your own (no copying) Point of homework: – to LEARN! – to make sure you are keeping up with the material – to prepare you for projects and exams Graded problems and practice problems Grading – Graded on a 10 point scale – Lowest homework grade dropped – Penalties for late homework

11
Projects Project 1 – individual – confidence intervals, hypothesis tests – written report up to 5 pages in length Project 2 – group – regression – 10 minute presentation – written report up to 10 pages in length

12
Exams Midterm Exam 1: 2/22 and 2/23 Midterm Exam 2: 3/27 and 3/28 In-Class Portion: – Closed book: only allowed a calculator and one page of notes prepared only by you In-Lab Portion: – Open book: allowed any materials (including computer) except communication with other humans Final Exam: 4/30, 9 – 12 pm SAVE THESE DATES!

13
Labs Labs are on Thursday in Old Chem 01 Learn how to use statistical software – RStudio Familiarity with the software will be necessary for homework, projects, and exams You should have signed up for a section: 8:45 – 9:35 am (Jessica Feldman) (new section!) 10:20 – 11:10 am: Yue Jiang 11:55 – 12:45 pm (Yue Jiang) 1:30 – 2:20 pm (Michael McCreary) 3:05 – 3:55 pm (Christine Cheng) I need your gmail to set up an account

14
Keys to Success 1.COME TO CLASS! Come to class on-time and ready to pay attention and think. 2.COME TO LAB! Attend every lab, and spend time in lab working on statistics. 3.DO THE HOMEWORK! Try the homework first by yourself, get help where needed, and make sure you understand all the problems by the time you turn it in. 4.Start the projects early and allow adequate time for working on them. 5.Give yourself time to prepare a good cheat sheet for exams. Use this preparation to go through the material, and take time to review concepts you don’t understand. 6.Do lots of practice problems. 7.Stay on top of the material. Clear up confusion as it occurs.

15
Why Statistics? Statistics is all about DATA – Collecting DATA – Describing DATA – summarizing, visualizing – Analyzing DATA Data are everywhere! Regardless of your field, interests, lifestyle, etc., you will almost definitely have to make decisions based on data, or evaluate decisions someone else has made based on data

16
Data Data are a set of measurements taken on a set of individual units The individual units that measurements are taken on are known as cases One measurement collected across all the cases is known as a variable Usually data is stored and presented in a dataset, where each row represents one case, and each column represents one variable

17
Countries of the World Country Land AreaPopulationRuralHealthInternet Birth Rate Life ExpectancyHIV Afghanistan65223029021099763.71.746.543.9 Albania27400314329153.38.223.914.676.6 Algeria23817403437342634.810.610.220.872.40.1 American Samoa200661077.7 Andorra4708381011.121.370.510.4 Angola12467001802066843.36.83.142.9472 Antigua and Barbuda4408663469.51175 Argentina273669039882980813.728.117.375.30.5 Armenia28480307708736.17.26.215.373.50.1

18
Intro Statistics Survey Data

19
Diet Coke and Calcium DrinkCalcium Excreted Diet cola50 Diet cola62 Diet cola48 Diet cola55 Diet cola58 Diet cola61 Diet cola58 Diet cola56 Water48 Water46 Water54 Water45 Water53 Water46 Water53 Water48

20
Data US News and World Report National University Rankings Republican Presidential Nomination Polls Duke Basketball Hybrid Cars Stock Market Unemployment Rate Antidepressants and Alzheimer’s

21
Data Applicable to You Think of a potential dataset (it doesn’t have to actually exist) that you would be interested in analyzing What are the cases? What are the variables?

22
Kidney Cancer Source: Gelman et. al. Bayesian Data Anaylsis, CRC Press, 2004. Counties with the highest kidney cancer death rates

23
Kidney Cancer Source: Gelman et. al. Bayesian Data Anaylsis, CRC Press, 2004. Counties with the lowest kidney cancer death rates

24
Kidney Cancer If the values in the kidney cancer dataset are rates of kidney cancer deaths, then what are the cases? (a) The people living in the US (b) The counties of the US

25
Kidney Cancer If the values in the kidney cancer dataset are yes/no, then what are the cases? (a) The people living in the US (b) The counties of the US

26
Variables: Categorical vs Quantitative A categorical variable divides the cases into groups, placing each case into exactly one of two or more categories A quantitative variable measures or records a numerical quantity for each case.

27
CategoricalQuantitative

28
Kidney Cancer If the cases in the kidney cancer dataset are people, then the measured variable is… (a) Categorical (b) Quantitative

29
Kidney Cancer If the cases in the kidney cancer dataset are counties, then the measured variable is… (a) Categorical (b) Quantitative

30
Let’s Collect Some Data! QUESTION: If you are romantically interested in someone, should you be obvious about it, or should you play hard to get? Using Data to Answer a Question

31
Romance Which type of person are you generally more romantically interested in? (a) Someone who is obviously into you (b) Someone who plays hard to get

32
Romance MALES ONLY: Which type of person are you generally more romantically interested in? (a) Someone who is obviously into you (b) Someone who plays hard to get

33
Romance FEMALES ONLY: Which type of person are you generally more romantically interested in? (a) Someone who is obviously into you (b) Someone who plays hard to get

34
One or Two Variables Sometimes we are interested in one variable, as in whether people prefer obvious romantic interest or hard to get Other times we are interested in the relationship between two variables, such as 1)prefer obvious interest or hard to get? 2)gender

35
What do you want to know? We’ll do a class survey, collecting data you are interested in. 1.What data do you want to collect from your peers? One variable or a relationship between two variables? What are the variables? Are they categorical or quantitative?

36
What do you want to know? 2.Write a question to measure each variable of interest. Write questions so the resulting data will be accurate and easy to analyze. Quantitative variable? Give units. Categorical variable? Make multiple choice and give the possible categories (no more than 5). Be clear and specific.

37
Summary Data are everywhere, and pertain to a wide variety of topics A dataset is usually comprised of variables measured on cases Variables can be categorical or quantitative Data can be used to provide information about essentially anything we are interested in and want to collect data on!

38
Course Objectives An understanding of the importance of data collection, the ability to recognize limitations in data collection methods, and an awareness of the role that data collection plays in determining the scope of inference. The ability to use technology to summarize data numerically and visually, and to perform straightforward data analysis procedures. A solid conceptual understanding of key concepts such as the logic of statistical inference, estimation with intervals, and testing for significance. The ability to understand and think critically about data-based claims. The knowledge of which statistical methods to use in which situations, the technological expertise to use the appropriate method(s), and the understanding necessary to interpret the results correctly, effectively, and in context. An awareness of the power of data.

39
To Do Add your gmail address to the google doc if you haven’t alreadygoogle doc Buy a clicker if you don’t already have one Be on the lookout for data and data-based claims – they are everywhere!

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google