Presentation is loading. Please wait.

Presentation is loading. Please wait.

. Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution.

Similar presentations


Presentation on theme: ". Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution."— Presentation transcript:

1 . Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution occurs by natural selection Darwin’s theory: evolution occurs by natural selection Evidence supporting the theory of evolution Evidence supporting the theory of evolution The Modern Synthesis The Modern Synthesis The central role of evolution in modern biology The central role of evolution in modern biology

2 . Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution occurs by natural selection Darwin’s theory: evolution occurs by natural selection Evidence supporting the theory of evolution Evidence supporting the theory of evolution The Modern Synthesis The Modern Synthesis The central role of evolution in modern biology The central role of evolution in modern biology

3 . Describe the major ideas on evolution and related topics that had a significant influence on Charles Darwin as he developed the concept of evolution by natural selection.

4 . Historical perspective divine design and perfection model divine design and perfection model fossils fossils acquired traits acquired traits modern geology – Lyell, uniformitarianism, and the ancient Earth modern geology – Lyell, uniformitarianism, and the ancient Earth artificial selection artificial selection population limits population limits

5 .

6 . Historical perspective divine design and perfection model divine design and perfection model from Aristotle, whose ideas dominated most thinking on biology until the renaissance from Aristotle, whose ideas dominated most thinking on biology until the renaissance species were viewed on a scale from simple to complex (which was considered more perfect) species were viewed on a scale from simple to complex (which was considered more perfect) all organisms were seen as moving toward perfection all organisms were seen as moving toward perfection based on divine intervention and design (thus supernatural, outside the true realm of science) based on divine intervention and design (thus supernatural, outside the true realm of science) now discredited in biology, but still part of the social consciousness now discredited in biology, but still part of the social consciousness

7 . Historical perspective fossils fossils fossils were known for centuries before Darwin fossils were known for centuries before Darwin fossils reveal organisms unlike any living today fossils reveal organisms unlike any living today the idea that some fossils represent species that had become extinct was recognized even as early as Leonardo da Vinci ( ) the idea that some fossils represent species that had become extinct was recognized even as early as Leonardo da Vinci ( )

8 . Figure 1.4 A mylodon. Drawing of a giant ground sloth. From A Naturalist’s Voyage Around the World: The Voyage of the H.M.S. Beagle by Charles Darwin (D. Appleton and Co., New York, 1890).

9 . Figure 1.1 “I was in many ways a naughty boy.” Portrait of young Charles and his sister Catherine. Charles later wrote in his autobiography, “I was much slower in learning than my younger sister Catherine, and I believe that I was in many ways a naughty boy.” From More Letters of Charles Darwin: A Record of His Work in a Series of Hitherto Unpublished Letters edited by F. Darwin and A. Seward (D. Appleton and Co., New York, 1903).

10 . Figure 1.2 Charles’ list of his father’s objections to the Beagle voyage. Reproduced by kind permission of the Syndics of Cambridge University Library.

11 . Figure 1.3 The HMS Beagle and Darwin’s quarters. Based on a drawing by shipmate Philip King, with whom Darwin shared his quarters. From Journal of Researches into Geology and Natural History of the Various Countries Visited by H.M.S. Beagle by Charles Darwin (facsimile edition of 1839 First Edition, Hafner Publishing Company, New York, 1952).

12 . Figure 1.6 HMS Beagle in the Strait of Magellan. Drawing from A Naturalist’s Voyage Around the World: The Voyage of the H.M.S. Beagle by Charles Darwin (D. Appleton and Co., New York, 1890).

13 . Figure 1.7 Map of the Voyage of the HMS Beagle, 1831–1836. Drawn by Leanne Olds.

14 . Historical perspective birth of modern geology – Lyell, uniformitarianism, and the ancient Earth birth of modern geology – Lyell, uniformitarianism, and the ancient Earth prior to the early 1800s, the world view of most was that the Earth is very young (around 6000 years old) prior to the early 1800s, the world view of most was that the Earth is very young (around 6000 years old) in the early 1800s, geologists began to apply scientific reasoning to studies of geological processes, and quickly recognized that these processes require that the Earth be very old (billions of years) to occur naturally in the early 1800s, geologists began to apply scientific reasoning to studies of geological processes, and quickly recognized that these processes require that the Earth be very old (billions of years) to occur naturally

15 . Historical perspective this “uniformitarian” model of geological processes was made famous by Lyell’s Principles of Geology, which influenced Charles Darwin this “uniformitarian” model of geological processes was made famous by Lyell’s Principles of Geology, which influenced Charles Darwin the uniformitarian model is essentially the basis of geology today; confirming tests of this model include dating rocks using radioisotope ratios (more on that later) the uniformitarian model is essentially the basis of geology today; confirming tests of this model include dating rocks using radioisotope ratios (more on that later)

16 . Figure 1.7 Map of the Voyage of the HMS Beagle, 1831–1836. Drawn by Leanne Olds.

17 . Figure 1.9 Galapagos finches. Drawing from A Naturalist’s Voyage Around the World: The Voyage of the H.M.S. Beagle by Charles Darwin (D. Appleton and Co., New York, 1890).

18 . Figure 1.8 A Galapagos tortoise. Drawing from A Naturalist’s Voyage Around the World: The Voyage of the H.M.S. Beagle by Charles Darwin (D. Appleton and Co., New York, 1890).

19 . Darwin’s voyage Figure 1.7 Map of the Voyage of the HMS Beagle, 1831–1836. Drawn by Leanne Olds. Figure 1.10 The tree of life. Page from notebook “B,” where Darwin recorded his idea that life is connected like the branches of a tree, with ancestors at the bottom. Reproduced by kind permission of the Syndics of Cambridge University Library. 1831:Leaves on Beagle (age 22) 1836:Beagle returns to England; soon afterwards writes his story of the trip and begins his “secret notebooks”

20 .

21 . Darwin’s voyage 1831:Leaves on Beagle (age 22) 1836:Beagle returns to England; soon afterwards writes his story of the trip and begins his “secret notebooks” 1838:Reads Malthus’ Essay on the Principle of Populations 1839: Voyage of the Beagle published 1842:Makes 35-page sketch of theory 1844:Expands sketch to 230 pages 1859:Publishes On the Origin of Species by Means of Natural Selection 1871:Publishes The Descent of Man and Selection in Relation to Sex

22 . Darwin’s voyage There was much discussion by immediate predecessors and contemporaries of Darwin about: There was much discussion by immediate predecessors and contemporaries of Darwin about: how the divine design model did not mesh well with observation of the extremes of variation among species how the divine design model did not mesh well with observation of the extremes of variation among species the idea of extinct species represented in the fossil record the idea of extinct species represented in the fossil record functional similarities between the anatomy of extremely divergent species functional similarities between the anatomy of extremely divergent species the idea that evolution occurs thus was “in the air” at the time the idea that evolution occurs thus was “in the air” at the time attempts to find a convincing mechanism fell short (such as Lamarck’s acquired characteristics model) attempts to find a convincing mechanism fell short (such as Lamarck’s acquired characteristics model)

23 . Historical perspective acquired traits acquired traits mostly associated with Lamarck ( ) mostly associated with Lamarck ( ) still focused on a model of organisms driven toward complexity, but involved an explanation with natural causes still focused on a model of organisms driven toward complexity, but involved an explanation with natural causes postulated that changes or “acquired characteristics” during an organism’s life could be passed on to offspring postulated that changes or “acquired characteristics” during an organism’s life could be passed on to offspring famous example was Lamarck’s model for how giraffes developed long necks – he claimed that stretching of the neck in one generation would lead to offspring with longer necks famous example was Lamarck’s model for how giraffes developed long necks – he claimed that stretching of the neck in one generation would lead to offspring with longer necks understanding of genetic inheritance has led to rejection of acquired traits models understanding of genetic inheritance has led to rejection of acquired traits models

24 . Darwin’s theory: evolution occurs by natural selection Darwin’s theory of evolution was based on four general observations: Darwin’s theory of evolution was based on four general observations: overproduction overproduction variation variation competition competition differential reproductive success differential reproductive success natural selection will produce a population of individuals more suited to their environment through time natural selection will produce a population of individuals more suited to their environment through time

25 . Historical perspective Malthus ( ) wrote the most influential works on this subject Malthus ( ) wrote the most influential works on this subject mathematically, populations will grow geometrically if unchecked mathematically, populations will grow geometrically if unchecked food supplies rarely can be expected to grow faster than arithmetically, thus putting a limit on population growth food supplies rarely can be expected to grow faster than arithmetically, thus putting a limit on population growth population limits that would allow selection to act naturally were recognized population limits that would allow selection to act naturally were recognized

26 . Historical perspective artificial selection artificial selection it was well known that domesticated animals and plants had been breed over centuries by humans to produce different varieties it was well known that domesticated animals and plants had been breed over centuries by humans to produce different varieties indicates that the characteristics of a species can be modified by selection indicates that the characteristics of a species can be modified by selection some examples: some examples: different breeds of dogs different breeds of dogs “wild cabbage” lineage of cabbage, broccoli, cauliflower, Brussels sprouts, collards, kale, etc. “wild cabbage” lineage of cabbage, broccoli, cauliflower, Brussels sprouts, collards, kale, etc. many more many more

27 . Figure 1.9 Galapagos finches. Drawing from A Naturalist’s Voyage Around the World: The Voyage of the H.M.S. Beagle by Charles Darwin (D. Appleton and Co., New York, 1890).

28 . Darwin’s voyage Recall Darwin’s theological training – Recall Darwin’s theological training – Darwin was well aware of the impact that a workable, testable theory of evolution would have Darwin was well aware of the impact that a workable, testable theory of evolution would have …and the intense controversy and scrutiny it would draw… …and the intense controversy and scrutiny it would draw… so, although he worked out most of his theory of evolution shortly after his trip on the Beagle so, although he worked out most of his theory of evolution shortly after his trip on the Beagle …he spent 20 years accumulating evidence and doing experiments before finally publishing the idea! …he spent 20 years accumulating evidence and doing experiments before finally publishing the idea!

29 . Darwin’s voyage Darwin was spurred on to publish when Alfred Russel Wallace shared his independent work where he had reached similar conclusions to Darwin Darwin was spurred on to publish when Alfred Russel Wallace shared his independent work where he had reached similar conclusions to Darwin they first presented the theory of evolution by natural selection together in 1858 they first presented the theory of evolution by natural selection together in 1858

30 . Figure 3.1. The massive Amazon River system. The main river and its tributaries span more than fifteen thousand miles. Henry Walter Bates spent most of his eleven years in the Amazon on the main river, while Alfred Russel Wallace ventured far up the Rio Negro. Bates found more than 550 species of butterflies at Ega (now Tefé). Drawn by Leanne Olds.

31 . Figure 2.1 Sketch salvaged from fire and shipwreck of the Helen. This drawing of an Amazonian angelfish was one of the few sketches Wallace managed to save out of all of his notes and specimens on his doomed voyage home. It displays one of the important talents for naturalists before the age of photography — that of being a good artist. Drawing from the autobiography of Alfred Russel Wallace, My Life (New York: Dodd, Mead, and Co., 1905).

32 . Figure 2.2 The Malay Archipelago. Map by Leanne Olds.

33 . Figure 2.3 The Golden Birdwing butterfly. Wallace discovered this form (Ornithoptera croesus lydius) on the island of Batjan. Photograph by Barbara Strnadova.

34 . Figure 2.4 The Wallace Line.

35 . Darwin’s voyage Darwin published his first version of the book On the Origin of Species by Means of Natural Selection in 1859 Darwin published his first version of the book On the Origin of Species by Means of Natural Selection in 1859 in it, he laid out the entire argument with all of the evidence that he had been gathering ever since his voyage on the Beagle in it, he laid out the entire argument with all of the evidence that he had been gathering ever since his voyage on the Beagle

36 . Darwin’s voyage Darwin’s book had immediate and dramatic impact Darwin’s book had immediate and dramatic impact the force of his argument and evidence convinced many scientists quickly the force of his argument and evidence convinced many scientists quickly of course it stirred tremendous controversy as well of course it stirred tremendous controversy as well Darwin made several revisions of his work in response to some of the most reasonable criticisms Darwin made several revisions of his work in response to some of the most reasonable criticisms He also focused on human evolution in The Descent of Man (1871) He also focused on human evolution in The Descent of Man (1871)

37 . Describe the major ideas on evolution and related topics that had a significant influence on Charles Darwin as he developed the concept of evolution by natural selection.

38 . Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution occurs by natural selection Darwin’s theory: evolution occurs by natural selection Evidence supporting the theory of evolution Evidence supporting the theory of evolution The Modern Synthesis The Modern Synthesis The central role of evolution in modern biology The central role of evolution in modern biology

39 . Describe the logical reasoning behind Darwin’s concept of natural selection.

40 . Darwin’s theory: evolution occurs by natural selection Darwin’s theory of evolution was based on four general observations: Darwin’s theory of evolution was based on four general observations: overproduction – each species produces more offspring than will survive to maturity overproduction – each species produces more offspring than will survive to maturity variation – individuals in a population vary, and some of the variation is heritable (this was expanded by others later, as genetics came to be understood) variation – individuals in a population vary, and some of the variation is heritable (this was expanded by others later, as genetics came to be understood) competition – there is competition among the individuals of a population for limited resources (struggle for existence) competition – there is competition among the individuals of a population for limited resources (struggle for existence) differential reproductive success – individuals that possess more favorable characteristics (in the pool of variation) are more likely to survive and reproduce; those with less favorable characteristics are less likely to survive and reproduce differential reproductive success – individuals that possess more favorable characteristics (in the pool of variation) are more likely to survive and reproduce; those with less favorable characteristics are less likely to survive and reproduce thus, natural selection will produce a population of individuals more suited to their environment through time thus, natural selection will produce a population of individuals more suited to their environment through time

41 . Darwin’s theory: evolution occurs by natural selection when populations are separated (such as the geographic separation of islands from each other and a nearby continent), natural selection on two separate populations can produce two distinct populations with different characteristics – resulting in two separate species when populations are separated (such as the geographic separation of islands from each other and a nearby continent), natural selection on two separate populations can produce two distinct populations with different characteristics – resulting in two separate species note that for this theory to explain the current variety of species on Earth, there is a need for a long amount of time for natural selection to produce the variety observed; thus, the idea of an ancient Earth hundreds of millions to billions of years old is crucial note that for this theory to explain the current variety of species on Earth, there is a need for a long amount of time for natural selection to produce the variety observed; thus, the idea of an ancient Earth hundreds of millions to billions of years old is crucial

42 . Describe the logical reasoning behind Darwin’s concept of natural selection.

43 . Explain the terms microevolution and macroevolution (in their true scientific meanings), and describe how microevolution can lead to macroevolution.

44 . Darwin’s theory: evolution occurs by natural selection two major branches: microevolution, or changes of a population over time, and macroevolution, or the formation of species two major branches: microevolution, or changes of a population over time, and macroevolution, or the formation of species

45 . Explain the terms microevolution and macroevolution (in their true scientific meanings), and describe how microevolution can lead to macroevolution.

46 . Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution occurs by natural selection Darwin’s theory: evolution occurs by natural selection Evidence supporting the theory of evolution Evidence supporting the theory of evolution The Modern Synthesis The Modern Synthesis The central role of evolution in modern biology The central role of evolution in modern biology

47 . Discuss these major lines of evidence for evolution: –fossil record –anatomical evidence (comparisons, vestigial structures, “design” flaws) –distribution of organisms –developmental comparisons –molecular comparisons

48 . Figure 3.1. The massive Amazon River system. The main river and its tributaries span more than fifteen thousand miles. Henry Walter Bates spent most of his eleven years in the Amazon on the main river, while Alfred Russel Wallace ventured far up the Rio Negro. Bates found more than 550 species of butterflies at Ega (now Tefé). Drawn by Leanne Olds.

49 . Figure 3.2 Mimicry in butterflies. This is an original plate from Bates’ 1862 paper reporting the discovery of mimicry. The butterfly at the center (5) is Leptalis nehemia, the typical butterfly of the family. The other Leptalis butterflies (1–8) deviate greatly from this pattern, as they are mimics of other species. Each pair (3/3a, 4/4a, 6/6a, 7/7a, 8/8a) illustrates mimicry between Leptalis and species of other families. Specimens 3a, 4a, and 6a are members of the genus Ithomia that mimic varieties of Leptalis theonoe found in the area of Sao Paulo. Specimens 7a and 8a are members of the Mechanitis and Methona genera that mimic Leptalis amphione and Leptalis orise.

50 . Figure 3.3 Caterpillar mimic of snake head. First discovered by Bates, a number of species mimic the appearance of snake heads. This is the Spicebush Swallowtail caterpillar (Papilio trollus). Photo by Mary Jo Fackler.

51 . Figure 3.4 Mimicry in snakes. Arizona Mountain kingsnake (top) and Arizona coral snake (bottom). Photos by Gary Nafis.

52 . Evidence supporting the theory of evolution the fossil record the fossil record comparative anatomy of related species comparative anatomy of related species distribution of plants and animals distribution of plants and animals related species have similar patterns of development related species have similar patterns of development molecular comparisons among organisms molecular comparisons among organisms

53 . Evidence supporting the theory of evolution the fossil record the fossil record fossils provide direct evidence for change over time fossils provide direct evidence for change over time fossils range from mineralized casts or imprints (most commonly of bone, teeth, and shells, but sometimes of softer tissues) to actual body parts preserved in bogs, tar, amber, or ice fossils range from mineralized casts or imprints (most commonly of bone, teeth, and shells, but sometimes of softer tissues) to actual body parts preserved in bogs, tar, amber, or ice fossils provide evidence of intermediates between extant and extinct forms fossils provide evidence of intermediates between extant and extinct forms

54 . Evidence supporting the theory of evolution fossils provide direct evidence for change over time fossils provide direct evidence for change over time many relatively complete examples of transitions in body forms are known, such as the evolutionary lineage of horses and the transition of terrestrial species to modern whales many relatively complete examples of transitions in body forms are known, such as the evolutionary lineage of horses and the transition of terrestrial species to modern whales the fossil record provides tests of evolution as an explanation for the history of life on Earth – fossils can be dated, and the age of fossils invariably matches the predicted place of those body forms in the history of life on Earth the fossil record provides tests of evolution as an explanation for the history of life on Earth – fossils can be dated, and the age of fossils invariably matches the predicted place of those body forms in the history of life on Earth

55 . fossils provide direct evidence for change over time Basilosaurus, a fossil whale

56 . fossils provide direct evidence for change over time

57 . McFadden, Bruce “Fossil Horses – Evidence of Evolution.” Science Vol no. 5716, pp – 1730Fossil Horses – Evidence of Evolution fossils provide direct evidence for change over time

58 . Evidence supporting the theory of evolution the fossil record the fossil record fossils most commonly form in sedimentary rocks in aquatic environments fossils most commonly form in sedimentary rocks in aquatic environments the fossil record is biased toward organisms with hard parts that lived in aquatic or arid environments, where decay is slow and incorporation in rocks can occur with reasonable speed the fossil record is biased toward organisms with hard parts that lived in aquatic or arid environments, where decay is slow and incorporation in rocks can occur with reasonable speed organisms that lived in places of rapid decay are thus biased against in the fossil record organisms that lived in places of rapid decay are thus biased against in the fossil record

59 . Explain how fossils are dated.

60 . dating fossils relative position in rock layers relative position in rock layers sedimentary layers most commonly have the youngest layers nearer the surface, and are progressively older as you go deeper sedimentary layers most commonly have the youngest layers nearer the surface, and are progressively older as you go deeper large-scale geological events can be used to correlate rock strata from different sites; other dating methods are also used to correlate rock strata large-scale geological events can be used to correlate rock strata from different sites; other dating methods are also used to correlate rock strata

61 . dating fossils association with index fossils that have been dated by other means from other locations association with index fossils that have been dated by other means from other locations radiometric dating radiometric dating each radioisotope has characteristic, constant rates of decay each radioisotope has characteristic, constant rates of decay some allow for measurement of when a rock was formed or when an organism died some allow for measurement of when a rock was formed or when an organism died

62 . dating fossils radiometric dating radiometric dating example: potassium-40 decaying to argon-40 example: potassium-40 decaying to argon-40potassium-40 decaying to argon-40potassium-40 decaying to argon-40 when magma cools to solid rock, no argon is in the rock (escapes as the rock forms) when magma cools to solid rock, no argon is in the rock (escapes as the rock forms) once the rock hardens, the radioactive clock begins – potassium-40 in the rock decays to argon-40 once the rock hardens, the radioactive clock begins – potassium-40 in the rock decays to argon-40 measurement of the amounts of potassium-40 and argon-40 in the rock today are used to determine an age range for when the rock could have been formed measurement of the amounts of potassium-40 and argon-40 in the rock today are used to determine an age range for when the rock could have been formed half-life of 1.3 billion years: used for fossils tens of millions to billions of years old half-life of 1.3 billion years: used for fossils tens of millions to billions of years old

63 . dating fossils radiometric dating radiometric dating another example: carbon-14 decaying to nitrogen-14 another example: carbon-14 decaying to nitrogen-14carbon-14 decaying to nitrogen-14carbon-14 decaying to nitrogen-14 half-life of 5730 years half-life of 5730 years used for organic remains hundreds to tens of thousands of years old used for organic remains hundreds to tens of thousands of years old there are hundreds of well-studied sites with fossils that have been dated in some way; no truly incongruous fossils have been found there are hundreds of well-studied sites with fossils that have been dated in some way; no truly incongruous fossils have been found

64 . Explain how fossils are dated.

65 . comparative anatomy of related species organs or structures that have similar form due to a common evolutionary origin are called homologous features organs or structures that have similar form due to a common evolutionary origin are called homologous features example: the similarity between the human arm, the dolphin's flipper, the bat's wing, and the bird's wing example: the similarity between the human arm, the dolphin's flipper, the bat's wing, and the bird's wing example: plant leaves, cactus needles, flower sepals and petals example: plant leaves, cactus needles, flower sepals and petals

66 . comparative anatomy of related species vestigial structures – a feature that once had a role in the evolutionary history of a species but that no longer functions vestigial structures – a feature that once had a role in the evolutionary history of a species but that no longer functions natural selection will logically lead to degeneration of unused features natural selection will logically lead to degeneration of unused features however, it is not easy to completely remove by natural selection – thus, vestiges are left behind however, it is not easy to completely remove by natural selection – thus, vestiges are left behind

67 . comparative anatomy of related species not all organs or structures with functional similarity have a common origin not all organs or structures with functional similarity have a common origin such cases are called homoplastic features, or analogous features such cases are called homoplastic features, or analogous features resemblance between homoplastic features is superficial – consider an insect's wing and a bird's wing resemblance between homoplastic features is superficial – consider an insect's wing and a bird's wing independent evolution of similar features in distantly related organisms is called convergent evolution independent evolution of similar features in distantly related organisms is called convergent evolution

68 . distribution of plants and animals biogeography – the study of the past and present geographical distribution of organisms biogeography – the study of the past and present geographical distribution of organisms organisms on islands are most closely related (in form and genetically) to those from the nearest mainland, not those from similar islands in different parts of the world organisms on islands are most closely related (in form and genetically) to those from the nearest mainland, not those from similar islands in different parts of the world

69 . distribution of plants and animals biogeography – the modern theory of plate tectonics and reconstruction of the history of land masses on Earth explains: biogeography – the modern theory of plate tectonics and reconstruction of the history of land masses on Earth explains: much of the observed fossil distributions much of the observed fossil distributions timings of geographic isolations that would be expected for some modern distributions of species (example: the dominance of marsupials in Australia) timings of geographic isolations that would be expected for some modern distributions of species (example: the dominance of marsupials in Australia)

70 . Figure 2.4 The Wallace Line. Wallace discovered that the narrow strait between Bali and Lombok marked a boundary between Asiatic fauna (with tigers, rhinoceri, and orangutans) and Australia-type fauna (with kangaroos, cuscus, and other marsupials). Bali was once connected to the Asiatic continental shelf, but not to Lombok. The boundary line extends throughout the archipelago as shown. Drawn by Leanne Olds.

71 . related species have similar patterns of development very young embryos of reptiles, birds, mammals, and humans are indistinguishable very young embryos of reptiles, birds, mammals, and humans are indistinguishable studies of developmental biology are revealing the common genetic basis for such similarities – “devo/evo” study is one of the hottest fields in biology today studies of developmental biology are revealing the common genetic basis for such similarities – “devo/evo” study is one of the hottest fields in biology today

72 . Discuss how DNA sequence comparisons and “molecular clocks” work.

73 . molecular comparisons between organisms the “big test” for the theory of evolution by natural selection was this: the “big test” for the theory of evolution by natural selection was this: evolution by natural selection on inherited traits predicts that genetic sequence information will provide a record of evolutionary change and evolutionary relationships evolution by natural selection on inherited traits predicts that genetic sequence information will provide a record of evolutionary change and evolutionary relationships these genetic records should correlate with evolutionary relationships that have been established by other means, such as biogeography and comparative anatomy these genetic records should correlate with evolutionary relationships that have been established by other means, such as biogeography and comparative anatomy

74 . molecular comparisons between organisms evolution has passed this test with flying colors evolution has passed this test with flying colors the virtual universality of the genetic code is compelling evidence of a common ancestor the virtual universality of the genetic code is compelling evidence of a common ancestor changes in proteins and nucleic acids provide a record of evolutionary change changes in proteins and nucleic acids provide a record of evolutionary change detailed molecular studies have clearly documented microevolution in many cases, such as the emergence of antibiotic-resistant bacteria detailed molecular studies have clearly documented microevolution in many cases, such as the emergence of antibiotic-resistant bacteria

75 . molecular comparisons between organisms DNA sequencing provides a means to measure genetic similarities and differences between species DNA sequencing provides a means to measure genetic similarities and differences between species sequences of amino acids in proteins can also be used – these provide an indirect comparison of DNA sequences sequences of amino acids in proteins can also be used – these provide an indirect comparison of DNA sequences DNA and protein sequencing can be used to create a phylogenetic tree, a diagram showing the relatedness between species and lines of descent DNA and protein sequencing can be used to create a phylogenetic tree, a diagram showing the relatedness between species and lines of descent changes in proteins and nucleic acids provide a record of evolutionary change changes in proteins and nucleic acids provide a record of evolutionary change

76 . molecular comparisons between organisms changes in proteins and nucleic acids provide a record of evolutionary change changes in proteins and nucleic acids provide a record of evolutionary change DNA sequencing can also be used in some cases as a molecular clock to make some inference about when any two species diverged from each other (last shared a common ancestor) DNA sequencing can also be used in some cases as a molecular clock to make some inference about when any two species diverged from each other (last shared a common ancestor) example – humans and chimpanzees: ~98% sequence identity, diverged about 6 million years ago example – humans and chimpanzees: ~98% sequence identity, diverged about 6 million years ago

77 . Base Sequence Comparisons Divergence (difference) in nucleotide base sequence allows us to draw relationships between different organisms. Divergence (difference) in nucleotide base sequence allows us to draw relationships between different organisms. Here, differences in nucleotide base sequence of humans and some other primates compared. Here, differences in nucleotide base sequence of humans and some other primates compared. Of the organisms with data given here, chimp DNA is the most like human DNA, and spider monkeys DNA is the least like human DNA. Of the organisms with data given here, chimp DNA is the most like human DNA, and spider monkeys DNA is the least like human DNA.

78 full.pdf+html FGYzZOZxMw Human Chromosome 2 and its analogs in the apes - from Yunis, J. J., Prakash, O., The origin of man: a chromosomal pictorial legacy. Science, Vol 215, 19 March 1982, pp

79 . Discuss how DNA sequence comparisons and “molecular clocks” work.

80 . Discuss these major lines of evidence for evolution: –fossil record –anatomical evidence (comparisons, vestigial structures, “design” flaws) –distribution of organisms –developmental comparisons –molecular comparisons

81 . Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution occurs by natural selection Darwin’s theory: evolution occurs by natural selection Evidence supporting the theory of evolution Evidence supporting the theory of evolution The Modern Synthesis The Modern Synthesis The central role of evolution in modern biology The central role of evolution in modern biology

82 . What is the “modern synthesis”?

83 . The modern synthesis of evolutionary theory combines Darwin’s concept of natural selection with genetics although Mendel was a contemporary of Darwin, remember that his work was largely unrecognized until around 1900 although Mendel was a contemporary of Darwin, remember that his work was largely unrecognized until around 1900 how traits are inherited was central to Darwin’s theory of evolution how traits are inherited was central to Darwin’s theory of evolution thus Darwin (and others) were keenly interested in finding working models of inheritance thus Darwin (and others) were keenly interested in finding working models of inheritance

84 . The modern synthesis of evolutionary theory combines Darwin’s concept of natural selection with genetics when genetic mechanisms came to be widely understood, they were quickly combined with Darwin’s model in the modern synthesis, also called Neo-Darwinism or the synthetic theory of evolution when genetic mechanisms came to be widely understood, they were quickly combined with Darwin’s model in the modern synthesis, also called Neo-Darwinism or the synthetic theory of evolution this model emphasizes the genetics of populations this model emphasizes the genetics of populations evolution is seen as working by natural selection on individuals to change the genetic makeup of populations over successive generations evolution is seen as working by natural selection on individuals to change the genetic makeup of populations over successive generations

85 . The modern synthesis of evolutionary theory combines Darwin’s concept of natural selection with genetics mutations play a key role in providing a source of genetic variation mutations play a key role in providing a source of genetic variation without genetic variation, evolution cannot occur without genetic variation, evolution cannot occur mutations are necessary to produce genetic variation mutations are necessary to produce genetic variation while many mutations have no impact and many others are harmful, it is critical to recognize that some mutations are advantageous while many mutations have no impact and many others are harmful, it is critical to recognize that some mutations are advantageous

86 . What is the “modern synthesis”?

87 . Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution occurs by natural selection Darwin’s theory: evolution occurs by natural selection Evidence supporting the theory of evolution Evidence supporting the theory of evolution The Modern Synthesis The Modern Synthesis The central role of evolution in modern biology The central role of evolution in modern biology

88 . The central role of evolution in modern biology the modern synthetic theory of evolution is accepted today by most biologists as: the modern synthetic theory of evolution is accepted today by most biologists as: a robust and well-supported model a robust and well-supported model the central framework for the study of life the central framework for the study of life nearly all biologists today agree with the famous statement by the evolutionary geneticist T. Dobzhansky: nearly all biologists today agree with the famous statement by the evolutionary geneticist T. Dobzhansky: “Nothing in biology makes sense except in the light of evolution.”

89 . The central role of evolution in modern biology studies of evolution itself today focus largely on: studies of evolution itself today focus largely on: the causal processes of evolution, such as: the causal processes of evolution, such as: the speed of evolutionary change the speed of evolutionary change the role of chance in evolution the role of chance in evolution molecular comparisons between and within species by molecular comparisons between and within species by comparing DNA sequences comparing DNA sequences comparing genomes comparing genomes comparing proteins and proteomes comparing proteins and proteomes


Download ppt ". Chapter 22: Evolution Historical perspective on evolution Historical perspective on evolution Darwin’s voyage Darwin’s voyage Darwin’s theory: evolution."

Similar presentations


Ads by Google