Presentation is loading. Please wait.

Presentation is loading. Please wait.

Inheritance, Genes, and Chromosomes

Similar presentations


Presentation on theme: "Inheritance, Genes, and Chromosomes"— Presentation transcript:

1 Inheritance, Genes, and Chromosomes
8 Inheritance, Genes, and Chromosomes

2 Chapter 8 Inheritance, Genes, and Chromosomes
Key Concepts 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws 8.2 Alleles and Genes Interact to Produce Phenotypes 8.3 Genes Are Carried on Chromosomes 8.4 Prokaryotes Can Exchange Genetic Material

3 Chapter 8 Opening Question
How is hemophilia inherited through the mother, and why is it more frequent in males?

4 Early experiments with genetics yielded two theories:
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Early experiments with genetics yielded two theories: Blending inheritance—gametes contained determinants (genes) that blended when gametes fused during fertilization Particulate inheritance—each determinant was physically distinct and remained intact during fertilization

5 Mendel used the scientific method and studied garden peas.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Mendel used the scientific method and studied garden peas. Their flowers have both male and female sex organs, pistils, and stamens, to produce gametes. Male organs can be removed to allow fertilization by another flower.

6 In-Text Art, Ch. 8, p. 145

7 Character—observable physical feature (e.g., flower color, seed shape)
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Character—observable physical feature (e.g., flower color, seed shape) Trait—form of a character (e.g., purple flowers or white flowers, wrinkled seeds) Mendel worked with true-breeding varieties—when plants of the same variety were crossed, all offspring plants produced the same seeds and flowers.

8 Parental generation = P
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Mendel’s crosses: Pollen from one parent was transferred to the stigma of the other parent. Parental generation = P Resulting offspring = first filial generation or F1 If F1 plants self-pollinate, they produce second filial generation or F2.

9 This produced monohybrids in the F1 generation.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws In Mendel’s first experiment, he crossed plants differing in just one character (P). This produced monohybrids in the F1 generation. The monohybrids were then allowed to self- pollinate to form the F2 generation—a monohybrid cross. Mendel repeated this for seven characters.

10 Figure 8.1 Mendel’s Monohybrid Experiments (Part 1)

11 Figure 8.1 Mendel’s Monohybrid Experiments (Part 2)

12 The trait that appears in the F1 is the dominant trait.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws One trait of each pair disappeared in the F1 generation and reappeared in F2 —these traits are recessive. The trait that appears in the F1 is the dominant trait. The ratio of dominant traits to recessive traits in the F2 was about 3:1.

13 Each plant has two genes for each character, one from each parent.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Mendel’s observations rejected the blending theory of inheritance and supported the particulate theory. He proposed that the determinants occur in pairs and are segregated in the gametes. Each plant has two genes for each character, one from each parent. Diploid—two copies of a gene Haploid—one copy of a gene LINK Review discussion of haploid and diploid organisms in Concept 7.1

14 Heterozygous individuals have two different alleles (e.g., Ss).
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Alleles are different forms of a gene, such as smooth or wrinkled seeds. True-breeding individuals have two copies of the same allele—they are homozygous for the allele (e.g., ss). Heterozygous individuals have two different alleles (e.g., Ss).

15 Phenotype—physical appearance of an organism (e.g., spherical seeds)
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Phenotype—physical appearance of an organism (e.g., spherical seeds) Genotype—the genetic makeup (e.g., Ss) Spherical seeds can be the result of two different genotypes—SS or Ss.

16 Each gamete receives only one copy.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Mendel’s first law: The law of segregation states that the two copies of a gene separate when an individual makes gametes. Each gamete receives only one copy.

17 Figure 8.2 Mendel’s Explanation of Inheritance (Part 1)

18 Allele combinations can be predicted using a Punnett square.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws When the F1 self-pollinates, there are three ways to get the dominant trait (e.g., spherical), but only one way to get the recessive (wrinkled)—resulting in the 3:1 ratio. Allele combinations can be predicted using a Punnett square.

19 Figure 8.2 Mendel’s Explanation of Inheritance (Part 2)

20 A gene is a short sequence on a longer DNA molecule.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws A gene is a short sequence on a longer DNA molecule. DNA molecules make up the chromosomes. Different alleles of a gene segregate when chromosomes separate during meiosis I. LINK The process of meiosis is described in Concept 7.4

21 Figure 8.3 Meiosis Accounts for the Segregation of Alleles (Part 1)

22 Figure 8.3 Meiosis Accounts for the Segregation of Alleles (Part 2)

23 Figure 8.3 Meiosis Accounts for the Segregation of Alleles (Part 3)

24 Mendel tested his hypothesis by doing test crosses:
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Mendel tested his hypothesis by doing test crosses: He did this to determine whether an individual is homozygous or heterozygous for a trait by crossing it with a homozygous recessive individual. Mendel crossed the F1 with known homozygotes (e.g., wrinkled or ss).

25 Figure 8.4 Homozygous or Heterozygous? (Part 1)

26 Figure 8.4 Homozygous or Heterozygous?

27 Mendel’s next experiment involved:
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Mendel’s next experiment involved: Crossing peas that differed in two characters—seed shape and seed color True-breeding parents: SSYY—spherical yellow seeds ssyy—wrinkled green seeds

28 F1 generation is SsYy—all spherical yellow.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws F1 generation is SsYy—all spherical yellow. Crossing the F1 generation (all identical double heterozygotes) is a dihybrid cross. Mendel asked whether, in the gametes produced by SsYy, the traits would be linked, or segregate independently.

29 Two possibilities included:
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Two possibilities included: Alleles could maintain associations seen in parental generation—they could be linked If linked, gametes would be SY or sy; F2 would have three times more spherical yellow than wrinkled green. If independent, gametes could be SY, sy, Sy, or sY. F2 would have nine different genotypes; phenotypes would be in 9:3:3:1 ratio.

30 If independent, gametes could be SY, sy, Sy, or sY in equal numbers.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Or: The segregation of S from s could be independent of Y from y—the two genes could be unlinked If independent, gametes could be SY, sy, Sy, or sY in equal numbers. The F2 generation would have nine different genotypes; and four phenotypes in a 9:3:3:1 ratio. This prediction was supported.

31 Figure 8.5 Independent Assortment (Part 1)

32 Figure 8.5 Independent Assortment (Part 2)

33 Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws
Mendel’s second law: The law of independent assortment states that alleles of different genes assort independently during gamete formation. This law doesn’t always apply to genes on the same chromosome, but chromosomes do segregate independently. ANIMATED TUTORIAL 8.1 Independent Assortment of Alleles

34 Figure 8.6 Meiosis Accounts for Independent Assortment of Alleles

35 Probability calculations and Punnett squares give the same results.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws One of Mendel’s contributions to genetics was the use of mathematical analyses— the rules of statistics and probability. His analyses revealed patterns that allowed him to formulate his hypotheses. Probability calculations and Punnett squares give the same results.

36 If an event is certain to happen, probability = 1
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Probability If an event is certain to happen, probability = 1 If an event cannot possibly happen, probability = 0 All other events have a probability between 0 and 1

37 The probability that both will come up heads is:
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Two coin tosses are independent events, each will come up heads ½ the time. The probability that both will come up heads is: ½ x ½ = ¼ To get the joint probability, multiply the individual probabilities (multiplication rule).

38 Figure 8.7 Using Probability Calculations in Genetics

39 Probability in a monohybrid cross
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Probability in a monohybrid cross After self-pollination of an F1 Ss, the probability that the F2 offspring will have the genotype SS is ½ x ½ = ¼; the same for ss offspring. There are two ways to get a heterozygote Ss; the probability is the sum of the individual probabilities (addition rule): ¼ + ¼ = ½ See Figures 8.2 and 8.7

40 Human pedigrees can show Mendel’s laws.
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Human pedigrees can show Mendel’s laws. Humans have few offspring; pedigrees do not show the clear proportions that the pea plants showed. Geneticists use pedigrees to determine whether a rare allele is dominant or recessive. INTERACTIVE TUTORIAL 8.1 Pedigree Analysis

41 Pattern of inheritance for a rare dominant allele:
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Pattern of inheritance for a rare dominant allele: Every person with the abnormal phenotype has an affected parent. Either all (if homozygous parent) or half (if heterozygous parent) of offspring in an affected family are affected.

42 Figure 8.8 Pedigree Analysis and Inheritance (Part 1)

43 Pattern of inheritance for a rare recessive allele:
Concept 8.1 Genes Are Particulate and Are Inherited According to Mendel’s Laws Pattern of inheritance for a rare recessive allele: Affected people often have two unaffected parents. In an affected family, one-fourth of children of unaffected parents are affected.

44 Figure 8.8 Pedigree Analysis and Inheritance (Part 2)

45 Concept 8.2 Alleles and Genes Interact to Produce Phenotypes
Different alleles arise through mutation— rare, stable, inherited changes in the genetic material. The wild type is the allele present in most of the population. Other alleles are mutant alleles. A gene with a wild-type allele that is present less than 99 percent of the time is called polymorphic. VIDEO 8.1 Mutant alleles in Drosophila melanogaster See Chapter 15

46 Concept 8.2 Alleles and Genes Interact to Produce Phenotypes
A given gene may have more than two alleles. Multiple alleles increase the number of possible phenotypes and may show a hierarchy of dominance in heterozygotes. One example is the coat color in rabbits.

47 Figure 8.9 Multiple Alleles for Coat Color in Rabbits

48 Concept 8.2 Alleles and Genes Interact to Produce Phenotypes
Some alleles are neither dominant nor recessive. A heterozygote has an intermediate phenotype in incomplete dominance. Red + white snapdragons = pink in F1 Red and white colors reappear in F2 as well as pink.

49 Figure 8.10 Incomplete Dominance Follows Mendel’s Laws (Part 1)

50 Figure 8.10 Incomplete Dominance Follows Mendel’s Laws (Part 2)

51 Concept 8.2 Alleles and Genes Interact to Produce Phenotypes
Codominance—two alleles of a gene produce phenotypes that are both present in the heterozygote. Example: ABO blood group system has three alleles of the gene: IA, IB, and IO. See Chapter 31

52 Figure 8.11 ABO Blood Reactions Are Important in Transfusions

53 Concept 8.2 Alleles and Genes Interact to Produce Phenotypes
Epistasis—phenotypic expression of one gene is influenced by another gene Example: Coat color in Labrador retrievers: Allele B (black) dominant to b (brown) Allele E (pigment deposition) is dominant to e (no pigment deposition—yellow)

54 Figure 8.12 Genes Interact Epistatically

55 Concept 8.2 Alleles and Genes Interact to Produce Phenotypes
Hybrid vigor, or heterosis, is a cross between two different true-breeding homozygotes. It can result in offspring with stronger, larger phenotypes. Most complex phenotypes are determined by multiple genes. Quantitative traits conferred by multiple genes are measured, rather than assessed qualitatively.

56 In-Text Art, Ch. 8, p. 154

57 Concept 8.2 Alleles and Genes Interact to Produce Phenotypes
Genotype and environment interact to determine the phenotype of an organism. Two parameters describe the effects: Penetrance is the proportion of individuals with a certain genotype that show the phenotype. Expressivity is the degree to which genotype is expressed in an individual. APPLY THE CONCEPT Alleles and genes interact to produce phenotypes

58 Concept 8.3 Genes Are Carried on Chromosomes
Genes are sequences of DNA that reside at a particular site on a chromosome—a locus (plural loci). The genetic linkage of genes on a single chromosome can alter their patterns of inheritance. ANIMATED TUTORIAL 8.2 Alleles That Do Not Assort Independently See Figures 8.3 and 8.6

59 Concept 8.3 Genes Are Carried on Chromosomes
Genetic linkage was discovered by Thomas Hunt Morgan and students at Columbia University using the fruit fly Drosophila melanogaster. Much genetic research has been done with Drosophila, which is considered a model organism because of its size, ease of breeding, and short generation time.

60 Concept 8.3 Genes Are Carried on Chromosomes
Some crosses performed with Drosophila did not yield expected ratios according to the law of independent assortment. Instead, some genes for body color and wing shape were inherited together. Morgan theorized that the two loci were linked on the same chromosome and could not assort independently.

61 Figure 8.13 Some Alleles Do Not Assort Independently (Part 1)

62 Figure 8.13 Some Alleles Do Not Assort Independently (Part 2)

63 Concept 8.3 Genes Are Carried on Chromosomes
Some offspring showed recombinant phenotypes, different from their parents. Genes may recombine during prophase I of meiosis by crossing over. Homologous chromosomes exchange corresponding segments. The exchange involves two chromatids of four in the tetrad—both chromatids become recombinant (each ends up with genes from both parents). LINK Review the discussion of crossing over in Concept 7.4

64 Figure 8.14 Crossing Over Results in Genetic Recombination (Part 1)

65 Figure 8.14 Crossing Over Results in Genetic Recombination (Part 2)

66 Figure 8.14 Crossing Over Results in Genetic Recombination (Part 3)

67 Concept 8.3 Genes Are Carried on Chromosomes
Recombinant offspring phenotypes (non- parental) appear in recombinant frequencies. To determine the recombinant frequencies, divide the number of recombinant offspring by the total number of offspring. Recombinant frequencies are greater for loci that are farther apart on the chromosome.

68 Figure 8.15 Recombination Frequencies (Part 1)

69 Figure 8.15 Recombination Frequencies (Part 2)

70 Concept 8.3 Genes Are Carried on Chromosomes
Recombinant frequencies can be used to make genetic maps showing the arrangement of genes along a chromosome. Recombinant frequencies are converted to map units corresponding to distances between genes.

71 In-Text Art, Ch. 8, p. 157 (1)

72 Concept 8.3 Genes Are Carried on Chromosomes
The fruit fly genome has four pairs of chromosomes—three pairs are similar in size, called autosomes. The fourth pair are of different size, the sex chromosomes. Many genes on the X chromosome are not present on the Y chromosome.

73 In-Text Art, Ch. 8, p. 157 (2)

74 Concept 8.3 Genes Are Carried on Chromosomes
Genes on sex chromosomes don’t follow Mendelian patterns. The Y chromosome carries few genes; the X chromosome carries many. Thus, males have only one copy of these genes—hemizygous. APPLY THE CONCEPT Genes are carried on chromosomes

75 Concept 8.3 Genes Are Carried on Chromosomes
Sex-linked inheritance—inheritance of a gene that is carried on a sex chromosome One example is the eye color in Drosophila.

76 Figure 8.16 A Gene for Eye Color Is Carried on the Drosophila X Chromosome (Part 1)

77 Figure 8.16 A Gene for Eye Color Is Carried on the Drosophila X Chromosome (Part 2)

78 Concept 8.3 Genes Are Carried on Chromosomes
X-linked recessive phenotypes: They appear much more often in males than females. A male with the mutation can only pass it on to daughters. Daughters who receive one X-linked mutation are heterozygous carriers. Mutant phenotype can skip a generation if it passes from a male to his daughter (normal) and then to her son.

79 Figure 8.17 Red–Green Color Blindness Is Carried on the Human X Chromosome

80 Sex limited trait Expression depends on the gender of the individual Examples: + Milk production in female mammals + Male pattern baldness

81 Concept 8.3 Genes Are Carried on Chromosomes
Besides the genes in the nucleus, mitochondria and plastids contain small numbers of genes. Mitochondria and plastids are inherited only from the mother. The inheritance of organelles and their genes is non-Mendelian and is called maternal or cytoplasmic inheritance.

82 Figure 8.18 Cytoplasmic Inheritance

83 Concept 8.4 Prokaryotes Can Exchange Genetic Material
Bacteria exchange genes by bacterial conjugation. Sex pilus is a projection that initiates contact between bacterial cells. Conjugation tube is a cytoplasmic bridge that forms between cells. The donor chromosome fragments and some material enters the recipient cell. See Chapters 4 and 7 LINK The evolutionary consequences of lateral gene transfer are discussed in Concepts 15.6 and 19.1

84 Figure 8.19 Bacterial Conjugation and Recombination (Part 1)

85 Figure 8.19 Bacterial Conjugation and Recombination (Part 2)

86 Concept 8.4 Prokaryotes Can Exchange Genetic Material
Bacteria have plasmids—small circular DNA molecules—besides the main chromosome. Genes on the plasmids are in categories: Metabolic tasks, breaking down hydrocarbons Involved in conjugation Antibiotic resistance

87 Concept 8.4 Prokaryotes Can Exchange Genetic Material
Plasmids can move between the cells during conjugation. They can: Replicate independently of the main chromosome Add their genes to the recipient cell’s genome

88 Figure 8.20 Gene Transfer by Plasmids

89 Answer to Opening Question
In hemophilia, the mutant gene for factor VIII, the clotting factor, is carried on the X chromosome. The affected males inherited their single X chromosome from their mothers—if the mutated form of the gene was present, they would develop the disease. Daughters would inherit a normal X chromosome as well and would not express the recessive trait, though could be carriers.

90 Figure 8.21 Sex Linkage in Royal Families of Europe


Download ppt "Inheritance, Genes, and Chromosomes"

Similar presentations


Ads by Google