Presentation is loading. Please wait.

Presentation is loading. Please wait.

Day 2: Nature of Science and Engineering NSE 3-6 MSTP Region 11 Teacher Center Today’s Trainers: Tamara Moore and Gillian Roehrig.

Similar presentations


Presentation on theme: "Day 2: Nature of Science and Engineering NSE 3-6 MSTP Region 11 Teacher Center Today’s Trainers: Tamara Moore and Gillian Roehrig."— Presentation transcript:

1 Day 2: Nature of Science and Engineering NSE 3-6 MSTP Region 11 Teacher Center Today’s Trainers: Tamara Moore and Gillian Roehrig

2 Goals and Agenda Teachers will experience an integrated engineering and science lesson Engineering is Elementary (EiE) Lighten Up: Designing Lighting Systems Correlating the EiE unit to State Standards

3 Connecting to the Standards

4 EiE-Engineering is Elementary EiE was developed by the Museum of Science in Boston in 2003. Funded by NSF grant. Integrate engineering and technology into science lessons that you currently teach. Does not explicitly teach the science, adds on to deepen knowledge by combining one field of engineering with science content. The units are not built upon each other; so they can be taught as a stand alone or in any order. http://www.mos.org/EiE

5 EiE-Engineering is Elementary The main goal of EiE: Increase children’s technological literacy. Increase elementary educators’ abilities to teach engineering and technology to their students. Modify the educational systems to include engineering at the elementary level. Conduct research and assessment to further the first three goals and contribute knowledge about engineering teaching and learning at the elementary level.

6 An Overview of EiE Kits for grade 3-5 Unit TitleScience TopicEngineering Field Water, Water Everywhere: Designing water filtersWaterEnvironmental Marvelous Machines: Making Work EasierSimple Machines Industrial Sounds like Fun: Seeing Animal SoundsSoundAcoustic Just Passing through: Designing Model MembranesOrganismsBioengineering An Alarming Idea: Designing Alarm CircuitsElectricityElectrical A Stick in the Mud: Evaluating a LandscapeLandformsGeotechnical Thinking Inside the Box: Designing a Plant PackagePlantsPackage The Attraction is Obvious: Designing a Maglev System MagnetismTransportation Now You are Cooking: Designing Solar OvensEnergyGreen A Long Way Down: Designing ParachutesAstronomyAerospace Solid as Rock: Replicating an ArtifactRocks and MineralsMaterials A Slick Solution: Cleaning an Oil SpillEcosystemEnvironmental Taking the Plunge: Designing SubmersiblesSinking and FloatingOcean Lighten Up: Designing Lighting SystemsLightOptical No Bones About It: Designing Knee BracesHuman BodyBiomeical

7 EiE Story Books

8 Teacher Guide Each EiE Unit includes: Lesson plans Duplication Masters (e.g., student handouts) leveled for Basic and Advanced abilities. Assessment materials References for background resources

9 Teacher Guide Structure Overview Prep Lesson Lesson 1: Engineering Story Lesson II: A broader view of an engineering field Lesson III: Scientific data to inform engineering design Lesson IV: Engineering design challenge Assessment

10 More on EiE Story books: $6.99 Teacher guides: $45 Materials kits: most around $300 EiE Educator Resources: search for content connections, multimedia tools, and supporting documents

11 1. Omar’s Time to Shine (Prep: 10-15 min., lesson: 90-120 min.) 2. Think Like an Optical Engineer (Prep: 20-25 min., lesson: 60-75 min.) 3. Shedding Light on It (Part I: Prep: 35-40 min., lesson: 75-90 min., Part II: Prep: 45-60 min., lesson: 55-60 min.) 4. Designing a Lighting System (Part I: prep: 15-20 min. lesson: 55-60 min., Part II: prep: 10-15 min. lesson: 90-120 min.) Overview of “Lighten Up: Designing a Lighting System”

12 As I walk around, I stay with you. I’m sometimes ahead of you and sometimes behind you. If you were smaller, I would be too. If you come toward me, I often get bigger (especially at night). If you shine a light on me, I disappear. What Am I?

13 Individually: What is a shadow? Where do shadows come from? Are there different kinds of shadows? Shadows

14 The riddle says “If you come toward me, I often get bigger.” ◦ Why might some shadows change size as you move while others do not? Shadows

15 Pinhole Lab Predict: Observe: Explain:

16 Pinhole Lab Explore what happens to the position of the spot of illumination when you move the maglite tip either to the right or to the left, or upward or downward. Describe your observations. What strategy did you use to make a successful prediction; that is, how did you decide where to mark the screen?

17 Pinhole Lab Write a statement (hypothesis) or draw a picture that explains your observations when you move the maglite from left to right.

18 Pinhole Lab Lights travels from a source in all directions. Lights travels in straight lines A light ray diagram is a convenient way of representing how light travels in a specific situation.

19 Pinhole Lab Imagine that you set up two maglites as suggested in the picture to the right. Predict: Observe: Explain:

20 Pinhole Lab Add light rays to the following top-view diagram to show where the dots of illumination would appear on the screen.

21 Shadows Lab New experimental set-up In the pinhole activity we developed two hypotheses: 1. Light leaves a point source in many directions and 2. Light travels in straight-line paths. Are these ideas supported by this new experimental evidence?

22 Shadows Lab Predict what you will see if you move the maglite closer to the blocker. Observe Explain

23 Shadows Labs In the pinhole activity we developed two hypotheses or main ideas: 1. Light leaves a point source in many directions and 2. Light travels in straight-line paths. Are these ideas supported by this new experimental evidence?

24 Shadows Lab

25 Imagine that you placed two maglites in front of the blocker, as suggested in the picture. Predict what you will see on the screen. Observe Explain

26 Shadows Lab Draw a light ray diagram describing what happens with the two maglites TM

27 Shadows Lab S3. Below is a not-to-scale diagram of the sun, moon and part of the earth’s surface. The diagram shows an occasional situation when the moon’s orbit places it between the earth and the sun. For each observer, indicate whether they would be located in the umbra part of the shadow, the penumbra part, or in a region where there is no shadow. Suppose each observer looked in the direction of the sun through dark glasses (to protect their eyes). Indicate whether each observer would ‘see’ all of the sun, part of the sun, or none of the sun (that is, it would appear as a dark disc).

28 Mirror Lab In this experiment we extend our investigation of light to consider what happens when light interacts with a shiny surface Predict Observe Explain mirror Index card

29 Mirror Lab Investigate what happens when you change the angle of the light hitting the mirror The angle of incidence is always equal to the angle of reflection

30 Intensity Demo What happens to our ability to see the image as we move the flashlight? As the distance that the light travels from its source increases, the intensity of the light decreases

31 Lesson 1: Omar’s Time to Shine Read the story Discuss optical engineering Introduce ideas about light Introduce the engineering design process

32 Lesson 1: Omar’s Time to Shine What type of work do optical engineers do? What did you learn about engineering from Omar? Coating to block light Lasers for DVD player Fiber optics Camera lenses Microscopes Technologies Optical Engineers Design and Improve

33 Lesson 1: Omar’s Time to Shine Let’s add to our poster “What we know about light?”

34 Lesson 1: Omar’s Time to Shine How did Omar use the engineering design process to help him design a lighting system?

35 Lesson 2: Think Like an Optical Engineer Explore how light interacts with a variety of materials Learn vocabulary around light Connect findings to the work of optical engineers

36 Lesson 3: Shedding Light on It Explore how light travels in a straight line until it comes in contact with another medium Experiment with reflecting light using mirrors to determine the law of reflection Explore the relationship between the distance of an object from a light source & the intensity of light on that object.

37 Engineering Design Challenge When Ancient Egyptian tombs were re- discovered in the 1920’s, people wanted to make copies of the hieroglyphs and paintings inside the tombs to display in museums around the world. Artists were sent to the tombs They needed light inside the tombs They only had one light source… the sun!

38 Engineering Design Challenge Your engineering team needs to design a lighting system to light as many of the hieroglyphs inside the Egyptian tomb as possible using only mirrors and one light source. You will tell a documentary film crew about your lighting system design when you are finished.

39 Criteria and Constraints What does our lighting system need to do? What requirements do we need to meet? What are our constraints?

40 Lesson 3: Shedding Light on It Most of Lesson 3 are activities: ◦ Path of light activity ◦ Angle of reflection activity ◦ Intensity activity This content was covered in the Shadows Lab.

41 Lesson 3: Shedding Light on It Vulture Hieroglyphs! How can we make sure the artists can see the details of the hieroglyphs clearly enough to copy them accurately? Let’s look into the tomb. Is the light intense enough to copy them?

42 Light Intensity Meter Because there is already some light in the box, you’ll need to evaluate the intensity of the light on each hieroglyph. Don’t remove lid!!! Use the viewing doors to peek inside. Fill in sheet 3-15 Record the highest number block for each hieroglyph A-F.

43 Light Intensity and Distance Draw the paths the light took to illuminate each hieroglyph A – F on Handout 3-16 Turn in flashlights.

44 Your engineering team needs to design a lighting system to light as many of the hieroglyphs inside the Egyptian tomb as possible using only mirrors and one light source. You will tell a documentary film crew about your lighting system design when you are finished. Engineering Design Challenge Lesson 4: Designing a Lighting System

45 Engineering Design What is a system? ◦ A system is a group of parts or steps that interact to achieve a goal. What are the main parts of our system designs? ◦ The light and mirrors Is a system a technology? How do you know? ◦ A technology is anything that people design to solve a problem or meet a need. Systems can be designed to help solve problems.

46 Evaluating our designs Intensity Score ◦ We will use handout 4-11 in the same manner as we did in Lesson 3. Transfer the intensity score to sheet 4-6 Cost score: ◦ See the Lighting System Materials Price Sheet (4-10) ◦ Transfer total cost to cost score by using sheet 4-6 Intensity Score + Cost Score = Total

47 Imagine! Individually, brainstorm at least two ideas for how to light the hieroglyphs (4-4) Share ideas with your group

48 Plan! In your groups, plan for your design using the two handouts marked 4-5.

49 Improve! Fill out sheet 4-9 Then start again with Plan then Create… The interview!!! ◦ See page 4-12 for the interview…  Many ways to implement this!

50 Connecting to the Standards

51 An Overview of EiE Kits for grade 3-5 Unit TitleScience TopicEngineering Field Water, Water Everywhere: Designing water filtersWaterEnvironmental Marvelous Machines: Making Work EasierSimple Machines Industrial Sounds like Fun: Seeing Animal SoundsSoundAcoustic Just Passing through: Designing Model MembranesOrganismsBioengineering An Alarming Idea: Designing Alarm CircuitsElectricityElectrical A Stick in the Mud: Evaluating a LandscapeLandformsGeotechnical Thinking Inside the Box: Designing a Plant PackagePlantsPackage The Attraction is Obvious: Designing a Maglev System MagnetismTransportation Now You are Cooking: Designing Solar OvensEnergyGreen A Long Way Down: Designing ParachutesAstronomyAerospace Solid as Rock: Replicating an ArtifactRocks and MineralsMaterials A Slick Solution: Cleaning an Oil SpillEcosystemEnvironmental Taking the Plunge: Designing SubmersiblesSinking and FloatingOcean Lighten Up: Designing Lighting SystemsLightOptical No Bones About It: Designing Knee BracesHuman BodyBiomeical

52 Characteristics of Good Engineering Curricula Context Science/Math Content ◦ (even better if there are other content too) Scientific Inquiry ◦ Could include design of experiments Engineering Design ◦ Design cycles ◦ Redesign

53 Exit Slip Which of the EiE curricula are you most interested in implementing? Why? On a separate piece of paper, answer the question above and write one personal reflection from this training that you would like to share with the MSTP Instruction Team. Turn this in as you leave.


Download ppt "Day 2: Nature of Science and Engineering NSE 3-6 MSTP Region 11 Teacher Center Today’s Trainers: Tamara Moore and Gillian Roehrig."

Similar presentations


Ads by Google