Download presentation

Presentation is loading. Please wait.

Published byJayson Parker Modified over 2 years ago

1
Consider the possible arrangements of the letters a, b, and c. List the outcomes in the sample space. If the order is important, then each arrangement is a permutation of the three letters Outcomes in the sample space. abc acb bac bca cab cba There are six permutations.

2
Permutation Formula: Use when the item possibilities are all different. n: number of available items or choices r: the number of items to be selected Sometimes this formula is written: P(n,r). Remember: The permutation formula takes order into account. The outcome (red, blue, green) is not the same as the outcome (green, blue, red.)

3
If n=5 and r=2, what is the value of 5 P 2 ? The symbol 5 P 2 means the number of permutations of 5 items taken 2 at a time. A permutation of 5 objects taken 2 at a time is equal to...

4
If there are n items with n1 alike, n2 alike, n3 alike,..., nk alike, the number of permutations is calculated by dividing n factorial by the product of the factorials of the number of occurences of each of the like items. Use this permutation formula when some of the item possibilities are alike.

5
How many permutations are there for the letters in the word, BANANA? First, notice there are six total letters of which the A is repeated 3 times and the N is repeated 2 times. The number of permutations is equal to.... There are six letters in BANANA (6!). The A repeats three times (3!) and the N repeats two times (2!). There are 60 permutations.

6
How many permutations are there for the letters in the word, HAPPY? Remember to ask yourself, how many total letters are there? How many letters are repeated? How many times is each letter repeated? There are five letters in HAPPY (5!). The P repeats two times (2!). There are

7
1) Calculate the value of 7 P 3 A permutation of 7 objects taken 3 at a time is equal to...

8
2) Calculate the value of 9 P 4 A permutation of 9 objects taken 4 at a time is equal to...

9
How many permutations are there for the letters in the word, STATISTICS? There are ten letters in STATISTICS (10!). The S repeats three times (3!), the T repeats three times (3!), and the I repeats two times (2!).

10
When different orderings of the same items are to be counted individually, i.e. each listing represents a different scenario (mn is not the same as nm), the problem involves permutations. When different orderings are not to be counted separately, i.e. the outcome, mn is equivalent to the outcome nm, the problem involves combinations.

11
Combination Formula: Different orders of the same items are not counted. The combination formula is equivalent to dividing the corresponding number of permutations by r!. n: number of available items or choices r: the number of items to be selected Sometimes this formula is written: C(n,r).

12
Taking the letters a, b, and c taken two at a time, there are six permutations: {ab, ac, ba, bc, ca, cb}. If the order of the arrangement is not important, how many of these outcomes are equivalent, i.e. how many combinations are there ab = ba; ac = ca; and bc = cb The three duplicate permutations would not be counted, therefore three combinations exist

13
Calculate the value of 7 C 4. This represents a combination of 7 objects taken 4 at a time and is equal to

14
Calculate the value of 9 C 5 This represents a combination of 9 objects taken 5 at a time and is equal to...

15
Determine whether the following scenarios represent permutations or combinations. Correct answers are provided at the end of this section. 1) Selecting two types of yogurt from the grocery's dairy case from a selection of nine. 2) Selecting your favorite yogurt and then your second favorite yogurt from a selection of nine. 3) Selecting three members from your class to work specific homework problems on the board. 4) Choosing two books to take with you on vacation from the nine books on your shelf. 5) Choosing three CDs to purchase from the music store. 6) Arranging seven photographs on a page of your senior memory book.

16
1) Combination 2) Permutation 3) Permutation 4) Combination 5) Combination 6) Permutation

17
In how many ways can three class representatives be chosen from a group of twelve students? If the order of the arrangement is not important, how many outcomes will there be? This represents a combination of 12 objects taken 3 at a time and is equal to 9!

Similar presentations

OK

10.3 – Using Permutations and Combinations Permutation: The number of ways in which a subset of objects can be selected from a given set of objects, where.

10.3 – Using Permutations and Combinations Permutation: The number of ways in which a subset of objects can be selected from a given set of objects, where.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt online examination project in java Ppt on waxes Ppt on central limit theorem example Ppt on social contract theory Ppt on electrical engineering major projects Ppt on any civil engineering topics Ppt on tcp ip protocol architecture Ppt on council of ministers iran Ppt on weapons of mass destruction book Ppt on 8 wonders of the world