Download presentation

1
**Reflections and Translations**

Chapter 9.1 and 9.2 Reflections and Translations

2
Reflection A reflection is a flip.

3
**Reflect over the x-Axis**

Graph the point A (-2, 4) Graph the image of A’ under a reflection in the x-axis.

4
**Reflect over the y-Axis**

Graph the point B (2, -5) Graph the image of B’ under a reflection in the y-axis.

5
Concept

6
**Reflect over the x-Axis**

Graph the line segment AB A (-6, 0) , B (-2, -6) Graph the image of AB’ under a reflection in the x-axis.

7
**Reflect over the y-Axis**

Graph the line segment XY X (2, 2) , Y (4, 5) Graph the image of XY’ under a reflection in the y-axis.

8
**Multiply the x-coordinate of each vertex by –1. (x, y) → (–x, y) **

Reflect a Figure in the x- or y-axis B. Graph quadrilateral ABCD with vertices A(1, 1), B(3, 2), C(4, –1), and D(2, –3) and its reflected image in the y-axis. Multiply the x-coordinate of each vertex by –1. (x, y) → (–x, y) A(1, 1) → A'(–1, 1) B(3, 2) → B'(–3, 2) C(4, –1) → C'(–4, –1) D(2, –3) → D'(–2, –3)

9
**Multiply the y-coordinate of each vertex by –1. (x, y) → (x, –y) **

Reflect a Figure in the x- or y-axis A. Graph quadrilateral ABCD with vertices A(1, 1), B(3, 2), C(4, –1), and D(2, –3) and its image reflected in the x-axis. Multiply the y-coordinate of each vertex by –1. (x, y) → (x, –y) A(1, 1) → A'(1, –1) B(3, 2) → B'(3, –2) C(4, –1) → C'(4, 1) D(2, –3) → D'(2, 3)

10
A. Graph quadrilateral LMNO with vertices L(3, 1), M(5, 2), N(6, –1), and O(4, –3) and its reflected image in the x-axis. Select the correct coordinates for the new quadrilateral L'M'N'O'. A. L'(3, –1), M'(5, –2), N'(6, 1), O'(4, 3) B. L'(–3, 1), M'(–5, 2), N'(–6, –1), O'(–4, –3) C. L'(–3, –1), M'(–5, –2), N'(–6, 1), O'(–4, 3) D. L'(1, 3), M'(2, 5), N'(–1, 6), O'(–3, 4)

11
B. Graph quadrilateral LMNO with vertices L(–1, 0), M(1, 1), N(2, –2), and O(0, –4) and its reflected image under the y-axis. Select the correct coordinates for the point M' in the new quadrilateral L'M'N'O'. A. L'(–1, 0), M'(1, –1), N'(2, 2), O'(0, 4) B. L'(1, 0), M'(–1, 1), N'(–2, –2), O'(0, –4) C. L'(1, 0), M'(–1, –1), N'(–2, 2), O'(0, 4) D. L'(0, –1), M'(1, 1), N'(–2, 2), O'(–4, 0)

12
Concept

13
**Interchange the x- and y-coordinates of each vertex. (x, y) → (y, x) **

Reflect a Figure in the Line y = x Quadrilateral ABCD with vertices A(1, 1), B(3, 2), C(4, –1), and D(2, –3). Graph ABCD and its image under reflection of the line y = x. Interchange the x- and y-coordinates of each vertex. (x, y) → (y, x) A(1, 1) → A'(1, 1) B(3, 2) → B'(2, 3) C(4, –1) → C'(–1, 4) D(2, –3) → D'(–3, 2)

14
Example 5 Quadrilateral EFGH has vertices E(–3, 1), F(–1, 3), G(1, 2), and H(–3, –1). Graph EFGH and its image under reflection of the line y = x. Select the correct coordinates for the point H' in the new quadrilateral E'F'G'H'. A. E'(–3, –1), F'(–1, –3), G'(1, –2), H'(–3, 1) B. E'(3, –1), F'(1, –3), G'(–1, 2), H'(3, –1) C. E'(1, –3), F'(3, –1), G'(2, 1), H'(–1, –3) D. E'(–1, 3), F'(–3, 1), G'(–2, –1), H'(1, 3)

15
Concept

16
**Translations A translation is a slide.**

It moves all points of a figure the same distance in the same direction. Vectors are used to define translations.

17
Concept

18
**Translations in the Coordinate Plane**

A. Graph ΔTUV with vertices T(–1, –4), U(6, 2), and V(5, –5) along the vector –3, 2.

19
**Translations in the Coordinate Plane**

B. Graph pentagon PENTA with vertices P(1, 0), E(2, 2), N(4, 1), T(4, –1), and A(2, –2) along the vector –5, –1.

20
A. Graph ΔABC with the vertices A(–3, –2), B(4, 4), C(3, –3) along the vector –1, 3. Choose the correct coordinates for ΔA'B'C'. A. A'(–2, –5), B'(5, 1), C'(4, –6) B. A'(–4, –2), B'(3, 4), C'(2, –3) C. A'(3, 1), B'(–4, 7), C'(1, 0) D. A'(–4, 1), B'(3, 7), C'(2, 0)

21
B. Graph ΔGHJK with the vertices G(–4, –2), H(–4, 3), J(1, 3), K(1, –2) along the vector 2, –2. Choose the correct coordinates for ΔG'H'J'K'. A. G'(–6, –4), H'(–6, 1), J'(1, 1), K'(1, –4) B. G'(–2, –4), H'(–2, 1), J'(3, 1), K'(3, –4) C. G'(–2, 0), H'(–2, 5), J'(3, 5), K'(3, 0) D. G'(–8, 4), H'(–8, –6), J'(2, –6), K'(2, 4)

22
Example 3 Describing Translations A. ANIMATION The graph shows repeated translations that result in the animation of the raindrop. Describe the translation of the raindrop from position 2 to position 3 in function notation and in words.

23
Example 3 A. The graph shows repeated translations that result in the animation of the soccer ball. Choose the correct translation of the soccer ball from position 2 to position 3 in function notation. A. (x, y) → (x + 3, y + 2) B. (x, y) → (x + (–3), y + (–2)) C. (x, y) → (x + (–3), y + 2) D. (x, y) → (x + 3, y + (–2))

Similar presentations

Presentation is loading. Please wait....

OK

LESSON 9–3 Rotations.

LESSON 9–3 Rotations.

© 2018 SlidePlayer.com Inc.

All rights reserved.

By using this website, you agree with our use of **cookies** to functioning of the site. More info in our Privacy Policy and Google Privacy & Terms.

Ads by Google

Ppt on general etiquettes meaning Ppt on conservation of momentum calculator Ppt on direct broadcasting satellite Ppt on fair and lovely product Ppt on conservation of natural resources for class 10 Ppt on information and network security Ppt on game theory mario Ppt on road accidents statistics Ppt on acute coronary syndrome icd-9 Ppt on review of literature on job