Download presentation

Presentation is loading. Please wait.

Published byBertha Pitts Modified over 2 years ago

1
SOLUTION EXAMPLE 1 Multiply one equation, then add Solve the linear system: 6x + 5y = 19 Equation 1 2x + 3y = 5 Equation 2 STEP 1 Multiply Equation 2 by –3 so that the coefficients of x are opposites. 6x + 5y = 19 2x + 3y = 5 6x + 5y = 19 STEP 2 Add the equations. –4y = 4 –6x – 9y = –15

2
EXAMPLE 1 Multiply one equation, then add STEP 3 STEP 4 2x = 8 Write Equation 2. 2x + 3(–1) = 5 Substitute – 1 for y. 2x + 3y = 5 x = 4 Multiply. Subtract – 3 from each side. Solve for y. Substitute –1 for y in either of the original equations and solve for x. 2x + (–3) = 5 Divide each side by 2. y = –1

3
EXAMPLE 1 Multiply one equation, then add ANSWER The solution is (4, –1). CHECK Equation 2 2x + 3y = 5 Substitute 4 for x and –1 for y in each of the original equations. Equation 1 6x + 5y = 19 6(4) + 5(–1) = 19 ? 2(4) + 3(–1) = 5 ? 19 = 19 5 = 5

4
EXAMPLE 2 Multiply both equations, then subtract Solve the linear system: 4x + 5y = 35 Equation 1 2y = 3x – 9 Equation 2 SOLUTION STEP 1 4x + 5y = 35 Write Equation 1. –3x + 2y = –9 Rewrite Equation 2. Arrange the equations so that like terms are in columns.

5
EXAMPLE 2 Multiply both equations, then subtract STEP 2 4x + 5y = 35 –3x + 2y = –9 23x = 115 STEP 3 STEP 4 8x + 10y = 70 –15x +10y = –45 Multiply Equation 1 by 2 and Equation 2 by 5 so that the coefficient of y in each equation is the least common multiple of 5 and 2, or 10. Subtract: the equations. x = 5 Solve: for x.

6
EXAMPLE 2 Multiply both equations, then subtract STEP 5 4x + 5y = 35 4(5) + 5y = 35 y = 3 Write Equation 1. Substitute 5 for x. Solve for y. ANSWER The solution is (5, 3). Substitute 5 for x in either of the original equations and solve for y.

7
EXAMPLE 2 Multiply both equations, then subtract CHECK 4x + 5y = 35 ANSWER The solution is (5, 3). Substitute 5 for x and 3 for y in each of the original equations. 4(5) + 5(3) = 35 ? Equation 1 Equation 2 2y = 3x – 9 2(3) = 3(5) – 9 ? 35 = 35 6 = 6

8
GUIDED PRACTICE for Examples 1 and 2 Solve the linear system using elimination. –2x + 3y = –5 6x – 2y = 11. ANSWER The solution is (–0.5, –2).

9
GUIDED PRACTICE for Examples 1 and 2 3x + 10y = –3 2x + 5y = 32. ANSWER The solution is (9, –3). Solve the linear system using elimination.

10
GUIDED PRACTICE for Examples 1 and 2 9y = 5x + 5 3x – 7y = 5 3. Solve the linear system using elimination. ANSWER The solution is (–10, –5).

11
Standardized Test Practice EXAMPLE 3 Darlene is making a quilt that has alternating stripes of regular quilting fabric and sateen fabric. She spends $76 on a total of 16 yards of the two fabrics at a fabric store. Which system of equations can be used to find the amount x (in yards) of regular quilting fabric and the amount y (in yards) of sateen fabric she purchased ? x + y = 16 A B D x + y = 76 C 4x + 6y = 76 6x + 4y = 764x + 6y = 16

12
Standardized Test Practice EXAMPLE 3 SOLUTION Write a system of equations where x is the number of yards of regular quilting fabric purchased and y is the number of yards of sateen fabric purchased. Equation 1: Amount of fabric x + y = 16

13
Standardized Test Practice EXAMPLE 3 Equation 2: Cost of fabric The system of equations is : x + y = 16 4x + 6y = 76 Equation 1 Equation 2 ANSWER A D CB The correct answer is B. 4 76 6+ = y x

14
GUIDED PRACTICE for Example 3 SOCCER A sports equipment store is having a sale on soccer balls. A soccer coach purchases 10 soccer balls and 2 soccer ball bags for $155. Another soccer coach purchases 12 soccer balls and 3 soccer ball bags for $189. Find the cost of a soccer ball and the cost of a soccer ball bag. 4. ANSWER soccer ball $14.50, soccer ball bag: $5

Similar presentations

Presentation is loading. Please wait....

OK

Solving Systems of Linear Equations

Solving Systems of Linear Equations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on features problems and policies of agriculture Ppt on interest rate risk management Ppt on leverages diversity Ppt on vehicle tracking system with gps and gsm Ppt on single phase transformer Full ppt on electron beam machining cost Ppt on united nations organization Simple ppt on social networking sites Ppt on job rotation examples Viewer ppt online reader