Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ch 7 The Crystalline Solid State I.Formulas and Structures A.Simple Structures 1)Unit Cell = simplest repeating unit of the regular crystalline array 2)Bravais.

Similar presentations

Presentation on theme: "Ch 7 The Crystalline Solid State I.Formulas and Structures A.Simple Structures 1)Unit Cell = simplest repeating unit of the regular crystalline array 2)Bravais."— Presentation transcript:

1 Ch 7 The Crystalline Solid State I.Formulas and Structures A.Simple Structures 1)Unit Cell = simplest repeating unit of the regular crystalline array 2)Bravais Lattices = 14 possible basic crystal structure unit cell types

2 a)Atoms on corners and edges are shared between unit cells i.Rectangular corners shared by 8 unit cells (8 x 1/8 = 1 total atom in cell) ii.Other corners shared unequally, but still contribute 1 atom to unit cell iii.Edges shared by 4 cells, contribute (4 x ¼ = 1 atom to unit cell) iv.Faces shared by 2 cells, contribute ½ atom to each b)Angles and Dimensions can vary: triclinic has all different lengths and angles c)Lattice Points = positions of atoms needed to generate the whole crystal i.Body Centered Cubic: (0,0,0) = origin and (½, ½, ½) = center ii.All other atoms can be generated from these 2 by moving them exactly one cell length 3)Cubic Structures a)Primitive Cubic is the simplest type i.To fully describe: length of side, 90 o angles, (0,0,0) lattice point ii.8 x 1/8 = 1 atom in the unit cell iii.each atom surrounded by 6 others (Coordination Number = CN = 6) iv.Not efficiently packed; only 52.4% of volume is occupied (74.1% max) v.Vacant space at center with CN = 8 0.73r sphere would fit here

3 4)Body-Centered Cubic (bcc) a)One more atom is added to the center of the cube b)Size of unit cell must increase over simple cubic c)Diagonal across center = 4r (r = radius of one atom) d)Corner atoms not in contact with each other due to cell size expansion e)Side = 2.31r (Calculate this in Ex. 7-2) f)Unit cell contains 1(1) + 8(1/8) = 2 atoms g)Lattice Points: (0,0,0) and ( ½, ½, ½ ) 5)Close-Packed Structures a)Spheres will arrange to take up the least space, not cubic or bcc b)Two structures have almost identical packing efficiency (74.1%) i.Hexagonal Close Packing = (hcp) ii.Cubic Close Packing = (ccp) = Face-Centered Cubic = (fcc) iii.Both have CN = 12 for each atom: 6 in its layer, 3 above, and 3 below iv.HCP has 3 rd layer in identical position as first ABA; second layer above holes; CCP has 3 rd layer displaced so above holes in first layer ABC v.Both have 2 tetrahedral (T d ) holes per atom (CN = 4) formed by 3 atoms in one layer and one atom above/below vi.Both have 1 octahedral (O h ) hole per atom (CN = 6) formed by 3 atoms in one layer and 3 atoms above/below 4r l l


5 c)HCP unit cell is smaller than the hexagonal prism i)Take four touching atoms in 1 st layer and extend lines up to 3 rd layer ii)8(1/8) + 1 = 2 atoms in unit cell iii)Dimensions = 2r, 2r, and 2.83r iv)Angles = 120 o, 90 o, and 90 o v)Lattice Points = (0,0,0,) and ( 1/3, 2/3, 1/2)

6 d)CCP unit cell i)One corner from layer 1, opposite corner from layer 4 ii)6 atoms each from layers 2 and 3 in the unit cell iii)Unit cell is fcc iv)8(1/8) + 6(1/2) = 4 atoms in the unit cell v)Lattice Points = (0,0,0), ( ½, 0, ½), ( ½, ½, 0), (0, ½, ½)

7 e)Holes i)2 T d and 1 O h hole per atom in both (hcp) and (ccp) ii)If ionic compound, small cations can fill these holes iii)T d hole = 0.225rO h hole = 0.414r iv)NaCl has Cl - in (ccp) with Na + (ccp) but also in the O h holes v)Na + = 0.695r, so it forces the Cl - to be farther apart, but still CN = 6 6)Metallic Crystals a)Most metals crystallize in (bcc), (ccp), or (hcp) structures b)Changing pressure or temperature can interchange these forms for a metal c)Must consider bonding, not just geometric packing only d)Soft and malleable metals usually have (ccp) structure (copper) e)Harder and more brittle metals usually have the (hcp) structure (zinc) f)Most metals can be bent due to non-directional bonding i.Weak bonding to all neighbors, not strong bonding to any single one ii.Atoms can slide past each other and then realign into crystal form iii.Dislocations = imperfections in lattice; make it easier to bend iv.Impurities = other elements; allow slippage of layers v.Work Hardening = hammer until impurities are together vi.Heat: can soften by dispersing impurities or harden if control cooling

8 7)Diamond a)Each atom is tetrahedrally bonded to 4 other carbon atoms b)Directional single bonds, unlike metals, cause hardness B.Binary Compound Structures 1)Simplest structures just have 2 nd element in holes of the first element’s lattice a)Small cations can fit in T d /O h holes of large anions b)Large cations may only be able to fit in O h holes c)Even larger cations may cause changes in structure if they don’t fit in holes 2)Relative Number of Cations/Anions a)M 2 X won’t allow close-packing of anion lattice with cations in O h holes because there are more cations than holes b)Alternatives: cations in T d holes, vacancies, not close-packed

9 2)Sodium Chloride Structure: NaCl a)Na + in (fcc) and Cl - in (fcc) b)Offset by ½ unit cell length c)Na + are centered in edges of Cl - lattice (or vice versa) d)Most alkali halides have this same structure e)Large size difference of ions facilitate this structure f)Each Cl - has CN = 6 Na + Each Na + has CN = 6 Cl - 3)Cesium Chloride Structure: CsCl a)Cs in simple cubic structure with Cl - in center (or vice versa) b)Cl - = 0.83Cs + size (0.73r in center is ideal) c)Rare structure, need big cation (Cs, Tl only cations known with this structure)

10 4)Zinc Blende Structure: ZnS a)Same as diamond structure with alternating Zn and S atoms b)Alternate: Zn and S each in (fcc) lattices combined so each ion is in a T d hole of the other lattice c)Stoichiometry: only ½ of the T d holes are occupied and ½ are vacant 5)Wurtzite Structure: ZnS a)Rarer than Zinc Blende structure for ZnS; formed at higher Temperatures b)Zn and S each in (hcp) lattices combined so each ion is in a T d hole of the other lattice c)Again, ½ of the T d holes are vacant

11 6)Fluorite Structure: CaF 2 a)Ca 2+ in (ccp) lattice with 8 F - surrounding each and occupying all T d holes b)Alternate: F - in simple cubic lattice with Ca 2+ in alternate body centers c)Nearly perfect radius fits for this structure d)Antifluorite Structure i.Reverse stoichiometry compounds like Na 2 O ii.Every T d hole in the anion lattice is occupied by a cation

12 7)Nickel Arsenide Structure: NiAs a)As atoms in close packed layers exactly above each other b)Ni atoms in all the O h holes c)Both Ni and As have CN = 6 d)Alternate: Ni atoms occupy all O h holes of (hcp) As lattice e)Usual for MX compounds where X = Sn, As, Bi, S, Se, Te 8)Rutile Structure: TiO 2 a)Distorted TiO 6 octahedra forming columns by sharing edges b)Ti CN = 6; O CN = 3 c)Adjacent columns connected by sharing corners of octahedra d)Unit cell has Ti at corners and in the body center, 4 O in the faces, and 2 O in the plane of the body center Ti e)MgF 2, ZnF 2 are other examples

13 9)Complex Structures a)Substitution of cation or anion in a given structure is possible, giving a range of compounds with essentially the same structure. b)When charge or size is different in the substitution, the structure must change i.Balance charge by leaving vacancies ii.Lattice can spread/contract out to accommodate larger/smaller ions c)Complex, non-spherical anions may distort the basic lattice shape d)Large cations may require increased coordination number (> 6) Calcite Stucture: CN = 6 LiNO 3 NaNO 3 MgCO 3 CaCO 3 FeCO 3 InBO 3 YBO 3 Aragonite Stucture: CN = 9 CaCO 3 KNO 3 SrCO 3 LaBO 3 Hexagonal, CN = 6 O per metal Orthorhombic, CN = 9 O per metal

14 D)The Radius Ratio 1)We can crudely predict CN by using the ratio r + /r - 2)This assumes atoms are just packing as hard spheres (not really all that occurs) 3)Examples: a)NaCl r + /r - = 113/167 (CN = 4) = 0.667 r + /r - = 116/167 (CN = 6) = 0.695Fits best with CN = 6 b)ZnS r + /r - = 74/170 (CN = 4) = 0.435Fits best with CN = 4 r + /r - = 88/170 (CN = 6) = 0.518CN = 4 in actual structure 4)Example: CaF 2 has fluoride ions in a simple cubic array and calcium ions in alternate body centers, with r + /r - = 0.97. What are the coordination numbers of the two ions predicted by r + /r - ? What are the coordination numbers observed? Predict coordination numbers of Ca 2+ in CaCl 2 and CaBr 2.

Download ppt "Ch 7 The Crystalline Solid State I.Formulas and Structures A.Simple Structures 1)Unit Cell = simplest repeating unit of the regular crystalline array 2)Bravais."

Similar presentations

Ads by Google