# Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material.

## Presentation on theme: "Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material."— Presentation transcript:

face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material. Crystals are relatively easy to model. Many important materials (silicon, steel) are crystals Institute of Solid State Physics Crystal Structure Technische Universität Graz body centered cubic, bcc simple cubic

Crystals unit cell Bravais latticeCrystal = a1a1 a3a3 a2a2

Primitive Vectors: a1a1 = ½ a Y + ½ a Z a2a2 = ½ a X + ½ a Z a3a3 = ½ a X + ½ a Y Basis Vectors: B1B1 = 0 (Na) B2B2 = ½ a 1 + ½ a 2 + ½ a 3 = ½ aX + ½ aY + ½ aZ (Cl) Example NaCl http://cst-www.nrl.navy.mil/lattice/struk/b1.html

14 Bravais lattices http://en.wikipedia.org/wiki/Bravais_lattice Points of a Bravais lattice do not necessarily represent atoms.

Unit Cell Choice of unit cell is not unique volume of a unit cell = diamond a1a1 a3a3 a2a2

Wigner-Seitz Cells bcc fcc Rhombic dodecahedron http://britneyspears.ac/physics/crystals/wcrystals.htm http://en.wikipedia.org/wiki/Rhombic_dodecahedron http://en.wikipedia.org/wiki/Truncated_octahedron Truncated octahedron

Coordination number Number of atoms touching one atom in a crystal Diamond 4 Graphite 3 bcc 8 fcc 12 hcp 12 sc 6

atomic packing density HCPFCC close packing density = 0.74 random close pack = 0.64 simple cubic = 0.52 diamond = 0.34

From: Hall, Solid State Physics Fcc conventional unit cell showing close packed plane Primitive unit cellWigner-Seitz cell

Crystal planes and directions: Miller indices bcc Wigner Seitz cell KOH rapidly etches the Si planes [ ] specific direction family of equivalent directions ( ) specific plane { } family of equivalent planes

Cementite - Fe 3 C Unit cell cell 5.09000 6.74800 4.52300 90.000 90.000 90.000 natom 3 Fe1 26 0.18600 0.06300 0.32800 Fe2 26 0.03600 0.25000 0.85200 C 6 0.89000 0.25000 0.45000 rgnr 62 Cohenite (Cementite) Fe3 C Asymmetric unit Generated by PowderCell

Groups Crystals can have symmetries: translation, rotation, reflection, inversion,... Symmetries can be represented by matrices. All such matrices that bring the crystal into itself form the group of the crystal. AB  G for A, B  G 32 point groups (one point remains fixed during transformation) 230 space groups

http://it.iucr.org/A/

simple cubic http://cst-www.nrl.navy.mil/lattice/ Po Number: 221 Primitive Vectors: a1a1 = a X a2a2 = a Y a3a3 = a Z Basis Vector: B 1 = 0

fcc http://cst-www.nrl.navy.mil/lattice/ Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Tb, Ir, Pt, Au, Pb, Th Primitive Vectors: a1a1 =½ a Y + ½ a Z a2a2 =½ a X + ½ a Z a3a3 =½ a X + ½ a Y Basis Vector: B 1 = 0 Number 225

hcp http://cst-www.nrl.navy.mil/lattice/ Mg, Be, Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, Cd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Hf, Re, Os, Tl

bcc http://cst-www.nrl.navy.mil/lattice/ W Na K V Cr Fe Rb Nb Mo Cs Ba Eu Ta Primitive Vectors: Basis Vector: B 1 = 0 a1a1 = - ½ a X + ½ a Y + ½ a Z a2a2 = + ½ a X - ½ a Y + ½ a Z a3a3 = + ½ a X + ½ a Y - ½ a Z

NaCl http://cst-www.nrl.navy.mil/lattice/

CsCl http://cst-www.nrl.navy.mil/lattice/

perovskite http://cst-www.nrl.navy.mil/lattice/

ybco http://cst-www.nrl.navy.mil/lattice/

graphite http://cst-www.nrl.navy.mil/lattice/

diamond http://cst-www.nrl.navy.mil/lattice/ C Si Ge Primitive Vectors: Basis Vectors: Number: 227 a1a1 = ½ a Y + ½ a Z a2a2 = ½ a X + ½ a Z a3a3 = ½ a X + ½ a Y B1B1 = - 1/8 a 1 - 1/8 a 2 - 1/8 a 3 = - 1/8 a X - 1/8 a Y - 1/8 aZ B2B2 = + 1/8 a 1 + 1/8 a 2 + 1/8 a 3 = + 1/8 a X + 1/8 a Y + 1/8 aZ

http://cst-www.nrl.navy.mil/lattice/ zincblende ZnS GaAs InP

wurtzite http://cst-www.nrl.navy.mil/lattice/ ZnO CdS CdSe GaN AlN

Quartz http://cst-www.nrl.navy.mil/lattice/

body centered cubic, bcc simple cubic face centered cubic, fcc

Download ppt "Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material."

Similar presentations