Presentation is loading. Please wait.

Presentation is loading. Please wait.

Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material.

Similar presentations


Presentation on theme: "Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material."— Presentation transcript:

1 face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material. Crystals are relatively easy to model. Many important materials (silicon, steel) are crystals Institute of Solid State Physics Crystal Structure Technische Universität Graz body centered cubic, bcc simple cubic

2 Crystals unit cell Bravais latticeCrystal = a1a1 a3a3 a2a2

3 Primitive Vectors: a1a1 = ½ a Y + ½ a Z a2a2 = ½ a X + ½ a Z a3a3 = ½ a X + ½ a Y Basis Vectors: B1B1 = 0 (Na) B2B2 = ½ a 1 + ½ a 2 + ½ a 3 = ½ aX + ½ aY + ½ aZ (Cl) Example NaCl

4 14 Bravais lattices Points of a Bravais lattice do not necessarily represent atoms.

5 Unit Cell Choice of unit cell is not unique volume of a unit cell = diamond a1a1 a3a3 a2a2

6 Wigner-Seitz Cells bcc fcc Rhombic dodecahedron Truncated octahedron

7

8 Coordination number Number of atoms touching one atom in a crystal Diamond 4 Graphite 3 bcc 8 fcc 12 hcp 12 sc 6

9 atomic packing density HCPFCC close packing density = 0.74 random close pack = 0.64 simple cubic = 0.52 diamond = 0.34

10 From: Hall, Solid State Physics Fcc conventional unit cell showing close packed plane Primitive unit cellWigner-Seitz cell

11 Crystal planes and directions: Miller indices bcc Wigner Seitz cell KOH rapidly etches the Si planes [ ] specific direction family of equivalent directions ( ) specific plane { } family of equivalent planes

12 Cementite - Fe 3 C Unit cell cell natom 3 Fe Fe C rgnr 62 Cohenite (Cementite) Fe3 C Asymmetric unit Generated by PowderCell

13 Groups Crystals can have symmetries: translation, rotation, reflection, inversion,... Symmetries can be represented by matrices. All such matrices that bring the crystal into itself form the group of the crystal. AB  G for A, B  G 32 point groups (one point remains fixed during transformation) 230 space groups

14 Asymmetric Unit

15

16

17 simple cubic Po Number: 221 Primitive Vectors: a1a1 = a X a2a2 = a Y a3a3 = a Z Basis Vector: B 1 = 0

18 fcc Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Tb, Ir, Pt, Au, Pb, Th Primitive Vectors: a1a1 =½ a Y + ½ a Z a2a2 =½ a X + ½ a Z a3a3 =½ a X + ½ a Y Basis Vector: B 1 = 0 Number 225

19

20 hcp Mg, Be, Sc, Ti, Co, Zn, Y, Zr, Tc, Ru, Cd, Gd, Tb, Dy, Ho, Er, Tm, Lu, Hf, Re, Os, Tl

21 bcc W Na K V Cr Fe Rb Nb Mo Cs Ba Eu Ta Primitive Vectors: Basis Vector: B 1 = 0 a1a1 = - ½ a X + ½ a Y + ½ a Z a2a2 = + ½ a X - ½ a Y + ½ a Z a3a3 = + ½ a X + ½ a Y - ½ a Z

22 NaCl

23 CsCl

24 perovskite

25 ybco

26 graphite

27 diamond C Si Ge Primitive Vectors: Basis Vectors: Number: 227 a1a1 = ½ a Y + ½ a Z a2a2 = ½ a X + ½ a Z a3a3 = ½ a X + ½ a Y B1B1 = - 1/8 a 1 - 1/8 a 2 - 1/8 a 3 = - 1/8 a X - 1/8 a Y - 1/8 aZ B2B2 = + 1/8 a 1 + 1/8 a 2 + 1/8 a 3 = + 1/8 a X + 1/8 a Y + 1/8 aZ

28 zincblende ZnS GaAs InP

29 wurtzite ZnO CdS CdSe GaN AlN

30 Quartz

31 body centered cubic, bcc simple cubic face centered cubic, fcc


Download ppt "Face centered cubic, fcc Atoms are arranged in a periodic pattern in a crystal. The atomic arrangement affects the macroscopic properties of a material."

Similar presentations


Ads by Google