Download presentation

Presentation is loading. Please wait.

Published byGyles Small Modified over 2 years ago

1
Fatigue of Offshore Structures: Applications and Research Issues Steve Winterstein stevewinterstein@alum.mit.edu

2
Fatigue Under Random Loads Mean Damage Rate: where S = stress range; c and m material properties Welded steels: m = 2 - 4; Composites: m = 6 - 12

3
Fatigue Under Random Loads Mean Damage Rate: where S = stress range; c and m material properties Welded steels: m = 2 - 4; Composites: m = 6 - 12

4
Fatigue Under Random Loads Mean Damage Rate: where S = stress range; c and m material properties Welded steels: m = 2 - 4; Composites: m = 6 - 12 Assumes: Stresses Gaussian, narrow-band

5
Fatigue Under Random Loads Mean Damage Rate: where S = stress range; c and m material properties Welded steels: m = 2 - 4; Composites: m = 6 - 12 Assumes: Stresses Gaussian, narrow-band Common errors: Assume Gaussian, narrow-band

6
Bandwidth & Non-Gaussian Effects Damage Rate: E[D T ] = C BW * C NG * E[D T | Rayleigh] C BW, C NG = corrections for bandwidth, non-Gaussian effects

7
Bandwidth & Non-Gaussian Effects Damage Rate: E[D T ] = C BW * C NG * E[D T | Rayleigh] C BW, C NG = corrections for bandwidth, non-Gaussian effects Bandwidth Corrections: Unimodal spectra: Wirsching (1980s) Bimodal spectra: Jiao and Moan (1990s) Arbitrary spectra: Simulation (2000s: becoming cheaper)

8
Bandwidth & Non-Gaussian Effects Damage Rate: E[D T ] = C BW * C NG * E[D T | Rayleigh] C BW, C NG = corrections for bandwidth, non-Gaussian effects Bandwidth Corrections: Unimodal spectra: Wirsching (1980s) Bimodal spectra: Jiao and Moan (1990s) Arbitrary spectra: Simulation (2000s: becoming cheaper) Typically: C BW < 1

9
Bandwidth & Non-Gaussian Effects Damage Rate: E[D T ] = C BW * C NG * E[D T | Rayleigh] C BW, C NG = corrections for bandwidth, non-Gaussian effects Bandwidth Corrections: Unimodal spectra: Wirsching (1980s) Bimodal spectra: Jiao and Moan (1990s) Arbitrary spectra: Simulation (2000s: becoming cheaper) Typically: C BW < 1 Non-Gaussian Corrections: Nonlinear transfer functions from hydrodynamics Moment-based models (Hermite) & simulation or closed-form estimates of C NG

10
Bandwidth & Non-Gaussian Effects Damage Rate: E[D T ] = C BW * C NG * E[D T | Rayleigh] C BW, C NG = corrections for bandwidth, non-Gaussian effects Bandwidth Corrections: Unimodal spectra: Wirsching (1980s) Bimodal spectra: Jiao and Moan (1990s) Arbitrary spectra: Simulation (2000s: becoming cheaper) Typically: C BW < 1 Non-Gaussian Corrections: Nonlinear transfer functions from hydrodynamics Moment-based models (Hermite) & simulation or closed-form estimates of C NG Typically: C NG > 1

11
Can We Even Predict RMS stresses? Container Ships: Yes (Without Springing)

12
Can We Even Predict RMS stresses? Container Ships: Yes (Without Springing) TLP Tendons: Yes (With Springing)

13
Can We Even Predict RMS stresses? Container Ships: Yes (Without Springing) TLP Tendons: Yes (With Springing) VIV of Risers: No

14
Can We Even Predict RMS stresses? Container Ships: Yes (Without Springing) TLP Tendons: Yes (With Springing) VIV of Risers: No FPSOs: ??

15
Ship Fatigue: Theory vs Data Observed Damage (horizontal scale): predicted from measured strains by inferring stresses, fatigue damage. Predicted Damage (vertical scale): linear model based on observed H S Ref: W. Mao et al, “The Effect of Whipping/Springing on Fatigue Damage and Extreme Response of Ship Structures,” Paper 20124, OMAE 2010, Shanghai.

16
TLP Tendon Fatigue: 1 st -order vs Combined Loads Water Depth: 300m One of earliest TLPs (installed 1992) Ref: “Volterra Models of Ocean Structures: Extremes and Fatigue Reliability,” J.Eng.Mech.,1994

17
TLP Tendon Fatigue: 1 st -order vs Combined Loads Damage contribution of various Tp Large damage at Tp = 7s due to frequency of seastates Large damage at Tp = 12s due to geometry of platform Larger non-Gauss effects if T PITCH = 3.5s (resonance when Tp = 7s) Ref: “Volterra Models of Ocean Structures: Extremes and Fatigue Reliability,” J.Eng.Mech.,1994

18
VIV: Theory (Shear7) vs Data Ref: M. Tognarelli et al, “Reliability-Based Factors of Safety for VIV Fatigue Using Field Measurements,” Paper 21001, OMAE 2010, Shanghai.

19
VIV Factor: m=3.3, s=1.4 Median: 50 =27

20
LRFD Fatigue Design

24
Finally: Combined Damage on an FPSO High-cycle (low amplitude) loads due to waves… D FAST Low-cycle (high amplitude) loads due to other source (e.g., FPSO loading/unloading) --> D SLOW How to combine D FAST and D SLOW ?

25
SRSS: Largest safe region; least conservative

26
Proposed Combination “Rules” D TOT = [ D SLOW K + D FAST K ] 1/K K = 1/m Lotsberg (2005): Effectively adds stress amplitudes K= 2/m: Random vibration approach; adds variances K = 1: “Linear” damage accumulation K = 2: SRSS applied to damage (not rms levels) Notes: Less conservative rule as K increases; m = S-N slope: Damage = c S m ; D 1/m = c’ S

27
Combined Fatigue: DNV Approach

28
Merci beaucoup! Extra background slides follow…

29
The Snorre Tension-Leg Platform Water depth: 300m One of earliest TLPs (installed 1992)

34
How important are T N =2.5s cycles? Important when T WAVE = 2.5s … but this condition has small wave heights Important when T WAVE = 5.0s … due to second-order nonlinearity (springing) Non-Gaussian effects when T WAVE = 5.0s:

35
Answer: The Fatiguing Bookkeeping Likelihood of various (Hs,Tp)

36
Answer: The Fatiguing Bookkeeping Likelihood of various (Hs,Tp) Damage contribution of various (Hs,Tp)

37
Answer: The Fatiguing Bookkeeping Likelihood of various (Hs,Tp) Damage contribution of various Tp

38
Results: Damage contribution of various Tp Large damage at Tp = 7s due to frequency of seastates Large damage at Tp = 12s due to geometry of platform Larger non-Gauss effects if T PITCH = 3.5s (resonance when Tp = 7s)

Similar presentations

OK

ﴀﴀﴀ OGP Workshop on Lifetime extension – Pau – June 11 & 12, 2007 Wave data for fatigue analysis; Multi-modal wave & response spectra Valérie QUINIOU-RAMUS,

ﴀﴀﴀ OGP Workshop on Lifetime extension – Pau – June 11 & 12, 2007 Wave data for fatigue analysis; Multi-modal wave & response spectra Valérie QUINIOU-RAMUS,

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on weather and climate for kids Ppt on international accounting standards Ppt on cost centre accounting Ppt on object-oriented programming concepts ppt Doc convert to ppt online maker Topics for ppt on environmental issues Download ppt on cybercrime and security Ppt on commerce education in india Ppt on adr and gdr in india Ppt on energy cogeneration definition