Presentation is loading. Please wait.

Presentation is loading. Please wait.

1 Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal.

Similar presentations


Presentation on theme: "1 Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal."— Presentation transcript:

1 1 Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal Structures of [3]Catenanes Based on Pd or Pt Dinuclear Metallocycles Víctor Blanco, Marcos Chas, Dolores Abella, Carlos Peinador,* and José M. Quintela* J. Am. Chem. Soc. 2007, 129, Speaker: 黃仁鴻

2 2 Synthesis of [n]Catenanes 1.π-Donor/π-Acceptor complexes 2.Hydrogen bond interactions 3.Anion templation 4.Metal complexation

3 3 A Chemically-Switchable [2]Catenane Figure 1. The [2]catenane 1 4+ and the translational isomers (2A 4+ and 2B 4+ ) of the [2]catenane Balzani, V.; Credi, A.; Langford, S. J.; Raymo, F. M.; Stoddart, J. F.;Venturi, M. J. Am. Chem. Soc. 2000, 122, ab c

4 4 Amide-Based Interlocked Compounds Leigh, D. A.; Venturini, A.; Wilson, A. J.; Wong, J. K. Y.; Zerbetto, F. Chem.-Eur. J. 2004, 10, 4960.

5 5 Anion-Templated Assembly of a [2]Catenane Sambrook, M.; Wisner, J. A.; Paul, R. L.; Cowley, A. R.; Szemes, F.; Beer,P. D. J. Am. Chem. Soc. 2004, 126, Figure 2. Strategy for assembly of [2]-catenanes via anion templation.

6 6 Figure 3. Synthesis of a catenane using an octahedral metal atom and three bidentate chelates: construction principle. Chambron, J.-C.; Collin, J.-P.; Heitz, V.;Jouvenot, D.; Kern, J.-M.; Mobian, P.; Pomeranc, D.; Sauvage, J.-P. Eur. J. Org. Chem. 2004, Catenanes Built Around Octahedral Transition Metals

7 7 Synthesis of [n]Catenanes 1.π-Donor/π-Acceptor complexes 2.Hydrogen bond interactions 3.Anion templation 4.Metal complexation

8 8 Structures of Molecular Components Used in This Work

9 9 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

10 10 Synthesis of Dinuclear Molecular Squares 3a,b

11 11 1 H NMR Spectrum of 3a·4OTf·4PF 6 a a 8.99 ppm △ 8.91 ppm 8H 4H 8H

12 12 13 C NMR Spectrum of 3a·4OTf·4PF 6 DEPT-135 CH 2 C C a b c d i g e f h CH

13 13 HSQC Spectrum of 3a·4OTf·4PF 6 a b c d i g e f h i Heteronuclear Single Quantum Coherence 1 H- 13 C 1 J 1 H NMR 13 C NMR a a h

14 14 COSY Spectrum of 3a·4OTf·4PF 6 a b c d i g e f h 1 H NMR COrrelation SpectroscopY 1 H- 1 H 3 J h i i h b a a b g g e f

15 15 HMBC Spectrum of 3a·4OTf·4PF 6 a b c d i g e f h 13 C NMR 1 H NMR Heteronuclear Multiple Bond Coherence 1 H- 13 C 1 J, 2 J, 3 J g f b a a c

16 16 a b ppm ppm a b c c ppm Δδ=1.6 ppm Δδ=3.1 ppm Δδ=3.5 ppm f abe g h i d f e g h a b c d i g e f h 1 H & 13 C NMR Spectra of 3a·4OTf·4PF 6

17 17 1 H NMR Spectra of 1·2PF 6 and 2a at Different Concentrations 10 mM 5 mM 2.5 mM 0.5 mM 1·2PF 6

18 18 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

19 19 Rotaxane

20 20 Crystal Structure of Pseudorotaxane Complex between 1·2PF 6 and DB24C8 a2.52 Å149° b2.26 Å167° c2.21 Å167° d2.37 Å168° [H…O] distances[C-H…O] angle

21 21 1 H NMR Spectrum of DB24C8-1·2PF 6 Pseudorotaxane g f Δδ=0.40 ppm Δδ=0.30 ppm

22 22 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

23 23 Crystal Structure of The [3]Catenane (BPP3410) 2 -(3a) 3.83 Å

24 24 Partial 1 H NMR Spectra of Metallocycle 3a and (BPP34C10) 2 -(3a) Figure 2. Partial 1 H NMR (CD 3 CN, 500 MHz) spectra of metallocycle 3a (top) and (BPP34C10) 2 -(3a) at 237 K (bottom). Δδ= -0.7ppm Δδ= -0.1ppm Δδ= -0.3ppm a b e f

25 25 Electrospray Ionization Mass Spectrometry Figure 4. Observed (top) and theoretical (bottom) isotopic distribution for the fragment [(BPP34C10) 2 -(3b) - 3PF 6 ] +3. Isotope % H 1(100.0%) C 12(98.9%) 13(1.1%) N 14(99.6%) 15(0.4%) O 16(99.8%) 18(0.2%) F 19(100.0%) P 31(100.0%) Pt 192(0.8%) 194(32.9%) 195(33.8%) 196(25.3%) 198 (7.2%) [(BPP34C10) 2 -(3b) - 3PF 6 ] +3

26 26 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

27 27 1 H NMR Spectra of (DB24C8) 2 -(3a) Figure 5. Partial 1 H NMR (CD 3 CN, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) 3a (5 mM) + DB24C8 (10 mM), and (c) 3a (5 mM) + DB24C8(20 mM).

28 28 Crystal Structure of [3]Catenane (DB24C8) 2 -(3a)

29 29 Reversible Catenation of (DB24C8) 2 -(3a) Figure 6. 1 H NMR (CD 3 CN, 300 MHz, 298 K) spectra of (a) metallocycle 3a (5 mM), (b) solution (a) + DB24C8 (20 mM), (c) solution (b) + KPF 6 (20 mM), (d) solution (c) + 18C6 (20 mM).

30 30 Dinuclear molecular squares 3a,b Pseudorotaxanes [3]-Catenanes (BPP34C10) 2 -(3a,b) [3]-Catenanes (DB24C8) 2 -(3a,b) [3]-Catenanes (DN38C10) 2 -(3a,b)

31 31 Crystal Structure of (DN38C10) 2 -(3a)

32 32 Crystal Structure of (DN38C10) 2 -(3b)

33 33 Conclusions 1.Ligand 1 ‧ 2PF6 threads through the cavity of DB24C8 to generate a [2]pseudorotaxane that is stabilized principally by hydrogen-bonding interactions. 2.The solid-state structure of catenane (DB24C8) 2 -(3a) revealed that the Pd(en) corners of metallocycle are capped with two additional polyether cyclophanes to form a supramolecular complex composed of eight components. 3.The catenation process of (DB24C8) 2 -(3a) can be switched off and on in a controllable manner by successive addition of KPF 6 and 18-crown-6.

34 34 Conclusions(continued) 4.The reported catenanes are composed of a dinuclear molecular square bridged by ligand 1 ‧ 2PF 6 interpenetrated by two polyether macrorings. 5.X-ray crystallography in combination with NMR studies showed that π-πstacking and [C-H…π] interactions in addition to [C-H…O]hydrogen bonds are the noncovalent forces that stabilize the [3]catenanes.

35 35 Thanks for Your Attention!!

36 36 Structure of [3]-(DB24C8) 2 -(3b) Catenane Figure S49. View of the molecular structure of [3]-(DB24C8) 2 - (3b) catenane showing 50% probability displacement ellipsoids. H atoms, counterions and solvent molecules are omitted for clarity.

37 37 g g b b e e f f h h

38 38 e f e f

39 39 1 H NMR Spectrum of 3a·4OTf·4PF 6 a a 8.99 ppm a b c d i g e f h


Download ppt "1 Molecular Catenation via Metal-Directed Self-Assembly andπ-Donor/π-Acceptor Interactions: Efficient One-Pot Synthesis, Characterization, and Crystal."

Similar presentations


Ads by Google