Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 20 Acids and Bases. Section 20.1 Describing Acids and Bases n OBJECTIVES: –List the properties of acids and bases.

Similar presentations


Presentation on theme: "Chapter 20 Acids and Bases. Section 20.1 Describing Acids and Bases n OBJECTIVES: –List the properties of acids and bases."— Presentation transcript:

1 Chapter 20 Acids and Bases

2 Section 20.1 Describing Acids and Bases n OBJECTIVES: –List the properties of acids and bases.

3 Section 20.1 Describing Acids and Bases n OBJECTIVES: –Name an acid or base, when given the formula.

4 Properties of acids n Taste sour (don’t try this at home). n Conduct electricity. –Some are strong, others are weak electrolytes. n React with metals to form hydrogen gas. n Change indicators (blue litmus to red). n React with hydroxides to form water and a salt.

5 Properties of bases n React with acids to form water and a salt. n Taste bitter. n Feel slippery (don’t try this either). n Can be strong or weak electrolytes. n Change indicators (red litmus turns blue).

6 Names and Formulas of Acids n An acid is a chemical that produces hydrogen ions (H 1+ ) when dissolved in water n Thus, general formula = HA, where A is a monatomic or polyatomic anion n HCl (g) is hydrogen monochloride n HCl (aq) is named as an acid n Name focuses on the anion present

7 Names and Formulas of Acids 1. BINARY - When anion ends with - ide, the acid starts with hydro-, and the stem of the anion has the suffix - ic followed by the word acid 2. TERNARY - When anion ends with -ite, the anion has the suffix -ous, then acid 3. TERNARY - When anion ends with -ate, the anion suffix is -ic and then acid

8 Names and Formulas of Bases n A base produces hydroxide ions (OH 1- ) when dissolved in water. n Named the same way as any other ionic compound –name the cation, followed by anion n To write the formula: write symbols; write charges; then cross (if needed) n Sample Problem 20-1, p. 579

9 Section 20.2 Hydrogen Ions and Acidity n OBJECTIVES: –Given the hydrogen-ion or hydroxide-ion concentration, classify a solution as neutral, acidic, or basic.

10 Section 20.2 Hydrogen Ions and Acidity n OBJECTIVES: –Convert hydrogen-ion concentrations into values of pH, and hydroxide-ion concentrations into values of pOH.

11 Hydrogen Ions from Water n Water ionizes, or falls apart into ions: H 2 O  H 1+ + OH 1- n Called the “self ionization” of water n Occurs to a very small extent: [H 1+ ] = [OH 1- ] = 1 x M n Since they are equal, a neutral solution results from water n K w = [H 1+ ] x [OH 1- ] = 1 x n K w is called the “ion product constant”

12 Ion Product Constant H 2 O H + + OH - H 2 O H + + OH - n K w is constant in every aqueous solution: [H + ] x [OH - ] = 1 x n If [H + ] > then [OH - ] then [OH - ] < n If [H + ] n If we know one, other can be determined n If [H + ] > 10 -7, it is acidic and [OH - ] 10 -7, it is acidic and [OH - ] < n If [H + ] n Basic solutions also called “alkaline” n Sample problem 20-2, p. 582

13 Logarithms and the pH concept n Logarithms are powers of ten. –Review from earlier lessons, and p. 585 n definition: pH = -log[H + ] n in neutral pH = -log(1 x ) = 7 n in acidic solution [H + ] > n pH < -log(10 -7 ) n pH < 7 (from 0 to 7 is the acid range) n in base, pH > 7 (7 to 14 is base range)

14 pH and pOH n pH = -log[H + ] n pOH = -log [OH - ] n K w = [H + ] x [OH - ] = 1 x n pH + pOH = 14 n Thus, a solution with a pH less than 7 is an acid; a pH greater than 7 is a base; 7 is neutral

15 Basic Basic AcidicNeutral [OH - ] pH [H + ] pOH

16 Examples: n Sample 20-3, p.586 n Sample 20-4, p.586 n Sample 20-5, p.587 n Sample 20-6, p.588

17 Measuring pH n Why measure pH? –Everything from swimming pools, soil conditions for plants, medical diagnosis, soaps and shampoos, etc. n Sometimes we can use indicators, other times we might need a pH meter

18 Acid-Base Indicators n An indicator is an acid or base that undergoes dissociation in a known pH range, and has different colors in solution (more later in chapter) n Examples: litmus, phenolphthalein, bromthymol blue: Fig 20.8, p.590

19 Acid-Base Indicators n Although useful, there are limitations to indicators: –usually given for a certain temperature (25 o C), thus may change at different temperatures –what if the solution already has color? –ability of human eye to distinguish colors

20 Acid-Base Indicators n A pH meter may give more definitive results –some are large, others portable –works by measuring the voltage between two electrodes –needs to be calibrated –Fig , p.591

21 Section 20.3 Acid-Base Theories n OBJECTIVES: –Compare and contrast acids and bases as defined by the theories of Arrhenius, Brønsted-Lowry, and Lewis

22 Section 20.3 Acid-Base Theories n OBJECTIVES: –Identify conjugate acid-base pairs in acid-base reactions.

23 Svante Arrhenius n Swedish chemist ( ) - Nobel prize winner in chemistry (1903) n one of the first chemists to explain the chemical theory of the behavior of acids and bases n Dr. Hubert Alyea-last graduate student of Arrhenius. (link below)

24 Svante Arrhenius ( )

25 Hubert N. Alyea ( )

26 1. Arrhenius Definition n Acids produce hydrogen ions (H 1+ ) in aqueous solution. n Bases produce hydroxide ions (OH 1- ) when dissolved in water. n Limited to aqueous solutions. n Only one kind of base (hydroxides) n NH 3 (ammonia) could not be an Arrhenius base.

27 Polyprotic Acids n Some compounds have more than 1 ionizable hydrogen. n HNO 3 nitric acid - monoprotic n H 2 SO 4 sulfuric acid - diprotic - 2 H + n H 3 PO 4 phosphoric acid - triprotic - 3 H + n Having more than one ionizable hydrogen does not mean stronger!

28 Polyprotic Acids n However, not all compounds that have hydrogen are acids n Also, not all the hydrogen in an acid may be released as ions –only those that have very polar bonds are ionizable - this is when the hydrogen is joined to a very electronegative element

29 Arrhenius examples... n Consider HCl n What about CH 4 (methane)? n CH 3 COOH (ethanoic acid, or acetic acid) - it has 4 hydrogens like methane does…? n Table 20.4, p. 595 for bases

30 2. Brønsted-Lowry Definitions n Broader definition than Arrhenius n Acid is hydrogen-ion donor (H + or proton); base is hydrogen-ion acceptor. n Acids and bases always come in pairs. n HCl is an acid. –When it dissolves in water, it gives it’s proton to water. n HCl(g) + H 2 O(l) H 3 O + + Cl - n Water is a base; makes hydronium ion.

31 Johannes Bronsted / Thomas Lowry ( ) ( )

32 Acids and bases come in pairs... n A conjugate base is the remainder of the original acid, after it donates it’s hydrogen ion n A conjugate acid is the particle formed when the original base gains a hydrogen ion n Indicators are weak acids or bases that have a different color from their original acid and base

33 Acids and bases come in pairs... n General equation is: n HA(aq) + H 2 O(l) H 3 O + (aq) + A - (aq) n Acid + Base Conjugate acid + Conjugate base n NH 3 + H 2 O NH OH 1- base acid c.a. c.b. base acid c.a. c.b. n HCl + H 2 O H 3 O 1+ + Cl 1- n acid base c.a. c.b. n Amphoteric - acts as acid or base

34 3. Lewis Acids and Bases n Gilbert Lewis focused on the donation or acceptance of a pair of electrons during a reaction n Lewis Acid - electron pair acceptor n Lewis Base - electron pair donor n Most general of all 3 definitions; acids don’t even need hydrogen! n Sample Problem 20-7, p.599

35 Gilbert Lewis ( )

36 Section 20.4 Strengths of Acids and Bases n OBJECTIVES: –Define strong acids and weak acids.

37 Section 20.4 Strengths of Acids and Bases n OBJECTIVES: –Calculate an acid dissociation constant (K a ) from concentration and pH measurements.

38 Section 20.4 Strengths of Acids and Bases n OBJECTIVES: –Arrange acids by strength according to their acid dissociation constants (K a ).

39 Section 20.4 Strengths of Acids and Bases n OBJECTIVES: –Arrange bases by strength according to their base dissociation constants (K b ).

40 Strength n Strong acids and bases are strong electrolytes –They fall apart (ionize) completely. –Weak acids don’t completely ionize. n Strength different from concentration n Strong-forms many ions when dissolved n Mg(OH) 2 is a strong base- it falls completely apart when dissolved. –But, not much dissolves- not concentrated

41 Measuring strength n Ionization is reversible. n HAH + + A - n This makes an equilibrium n Acid dissociation constant = K a n K a = [H + ][A - ] (water is constant) [HA] n Stronger acid = more products (ions), thus a larger K a (Table 20.8, p.602)

42 What about bases? n Strong bases dissociate completely. n B + H 2 O BH + + OH - n Base dissociation constant = K b n K b = [BH + ][OH - ] [B] (we ignore the water) n Stronger base = more dissociated, thus a larger K b.

43 Strength vs. Concentration n The words concentrated and dilute tell how much of an acid or base is dissolved in solution - refers to the number of moles of acid or base in a given volume n The words strong and weak refer to the extent of ionization of an acid or base n Is concentrated weak acid possible?

44 Practice n Write the expression for HNO 2 n Write the K b for NH 3 n Sample 20-8, p. 604 n Carefully study Key Terms and equations, p. 608 n Be sure to do the ChemASAP programs, and take all the self-tests that are available!


Download ppt "Chapter 20 Acids and Bases. Section 20.1 Describing Acids and Bases n OBJECTIVES: –List the properties of acids and bases."

Similar presentations


Ads by Google