Download presentation

Presentation is loading. Please wait.

Published byLeo Wade Modified about 1 year ago

1
Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain

2
Douglas Hofstadter

3
1923 De Broglie hypothesis 1927 Electrons 1930 He atoms & H Neutrons 90‘s I 2, He 2, Na BEC 1999 Fullerenes C 60 & C m > amu 810 atoms Matter-waves timeline

4
Overview

5
Motivation

6
The Talbot Lau interferometer diffraction incoherent matter waves intensity Δx detection by shift of G3 g G1G2G3 v Δx preparation of transversal coherence

7
The Talbot Lau interferometer intensity Δx g G1G2G3 v Δx

8
The Talbot Lau interferometer intensity Δx g G1G2G3 v Δx

9
d g s A model interferometer

10
The Talbot Lau interferometer intensity Δx g G1G2G3 v Δx

11
Time - domain g g = s max A model interferometer

12
Time - domain d g After the same time all particles with the same mass produce the same interference, regardless of their velocities! A model interferometer Interference pattern of faster particles

13
Time - domain d g A model interferometer Interference pattern of slower particles

14
Time - domain After the same time all particles with the same mass produce the same interference, regardless of their velocities! A model interferometer

15
After a certain time.... all particles with the same mass.... contribute to the same interference pattern.... regardless of their velocity Transition to time-domain Cahn et al., PRL 79 (1997) Nimmrichter et al., NJP 13 (2011) -pulsed standing laser waves as periodic ionizing gratings g How to implement?

16
t=0 to MCP interferometer mirrorpulsed sourceTOF MS t=T T t source t detection mass signal Pulsed cluster source t=2T T OTIMA interferometer 157 nm post ionization

17
t=0 to MCP interferometer mirrorpulsed sourceTOF MS t=T T t source t detection mass signal Pulsed cluster source t=2T T OTIMA interferometer 157 nm post ionization

18
Quantum interference is revealed as a Mass-dependent signal amplification/reduction T1T1 T2T2 Asymmetric pulses T1T1 T2T2 Symmetric pulses ⟶ Interference m m/2

19
The machine

20
Interference pattern encoded in the mass spectrum Haslinger et al. Nature Physics (2013) Anthracene C 14 H 10 m = 178 amu neon seedgas, v max ≈920m/s ⟶ T T =19 µs difference due to constructive interference argon seedgas, v max ≈700m/s ⟶ T T =26 µs

21
Haslinger et al. Nature Physics (2013) Interference pattern encoded in the mass spectrum Anthracene C 14 H 10 m = 178 amu

22
Clusters of the following molecules have interfered in the OTIMA interferometer recently: ferrocene Fe(C 5 H 5 ) 2 m = 186 amu 1973 caffeine C 8 H 10 N 4 O 2 m = 194 amu vanillin C 8 H 8 O 3 m = 152 amu

23
S. Nimmrichter et al. Concept of a time-domain ionizing matter-wave interferometer New J. Phys. 13, (2011) P. Haslinger et al. A universal matter-wave interferometer with optical ionization gratings in the time domain Nature Physics, 9, 144–148 (2013) N. Dörre et al. Photofragmentation beam splitters for matter-wave interferometry Phys. Rev. Lett. 113, (2014) N. Dörre et al. A refined model for Talbot Lau matter-wave optics with pulsed photo-depletion gratings JOSA B 32, 114–120 (2015)

24
-absence of dispersive Grating/wall interaction high interference contrast expected for masses even beyond 10 6 amu massTalbot timerequired velocity required vacuua gravitational deflection 10 6 amu 10 7 amu 10 8 amu massTalbot timerequired velocity required vacuua gravitational deflection 10 6 amu15 ms 10 7 amu150 ms 10 8 amu1.5 s massTalbot timerequired velocity required vacuua gravitational deflection 10 6 amu15 ms1.3 m/s 10 7 amu150 ms13 cm/s 10 8 amu1.5 s1.3 cm/s massTalbot timerequired velocity required vacuua gravitational deflection 10 6 amu15 ms1.3 m/s10 -9 mbar 10 7 amu150 ms13 cm/s mbar 10 8 amu1.5 s1.3 cm/s mbar massTalbot timerequired velocity required vacuua gravitational deflection 10 6 amu15 ms1.3 m/s10 -9 mbar4.5 mm 10 7 amu150 ms13 cm/s mbar45 cm 10 8 amu1.5 s1.3 cm/s mbar45 m managable cooling and/or trapping necessary Limits & Outlook :

25
THE OTIMA TEAM special thanks to Markus Arndt Jonas Rodewald Nadine Dörre Philipp Geyer Stefan Nimmrichter (Theory)

26
Universal matter-wave interferometry from microscopic to macroscopic …in the time-domain

27
V(z)V(z) z Interferometer Standing wave Pions zg Mirror coils Bias field Mirror Octupole windings 60 cm Interferometer cell Trap Antihydrogen interferometer P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, , 2014

28
Antihydrogen interferometer Goals and features Test g for H, anti-H Initially 10-3, eventually 10-6 Design Efficient use of ~300 atoms / month Laser cooling (Donin, Fujiwara, Robicheaux J. Phys. B 46, ) Adiabatic cooling No Lyman-α laser for interferometry (but for laser cooling) Far off-resonant Bragg transitions, couples to dc polarizability Almost any atom Advantages Commercial lasers Based on ALPHA and atom interferometers, both work P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, , 2014

29
Thank you for your attention!

Similar presentations

© 2016 SlidePlayer.com Inc.

All rights reserved.

Ads by Google