Presentation is loading. Please wait.

Presentation is loading. Please wait.

Navigational Systems. Introduction Objectives of navigation: Know your position Efficient use of fuel Maintain a flight schedule Avoid other air traffic.

Similar presentations

Presentation on theme: "Navigational Systems. Introduction Objectives of navigation: Know your position Efficient use of fuel Maintain a flight schedule Avoid other air traffic."— Presentation transcript:

1 Navigational Systems

2 Introduction Objectives of navigation: Know your position Efficient use of fuel Maintain a flight schedule Avoid other air traffic Avoid ground-to-air missiles and anti-aircraft artillery (known sites) Minimize exposure to enemy radar

3 Air Navigation The basic principles of air navigation are identical to general navigation, which includes the process of planning, recording, and controlling the movement of a craft from one place to another. Successful air navigation involves piloting an aircraft from place to place without getting lost, breaking the laws applying to aircraft, or endangering the safety of those on board or on the ground. Air navigation differs from the navigation of surface craft in several ways: Aircraft travel at relatively high speeds, leaving less time to calculate their position en route

4 The techniques used for navigation in the air will depend on whether the aircraft is flying under the visual flight rules (VFR) or the instrument flight rules (IFR). In the latter case, the pilot will navigate exclusively using instruments and radio navigation aids such as beacons, or as directed under radar control by air traffic control. In the VFR case, a pilot will largely navigate using dead reckoning combined with visual observations, with reference to appropriate maps. This may be supplemented using radio navigation aids.

5 Navigation Services By Another Name Positioning, the ability to accurately and precisely determine one's location and orientation two dimensionally (or three dimensionally when required) referenced to a standard geodetic system (such as World Geodetic System 1984, or WGS84); Navigation, the ability to determine current and desired position (relative or absolute) and apply corrections to course, orientation, and speed to attain a desired position anywhere around the world, from sub-surface to surface and from surface to space; and Timing, the ability to acquire and maintain accurate and precise time from a standard (Coordinated Universal Time, or UTC), anywhere in the world and within user-defined timeliness parameters. Timing includes time transfer.

6 Main methods of navigation Classic dead-reckoning using air data (speed, altitude) and magnetic (bearing) coupled with LORAN-C. Radio navigation Inertial navigation Satellite navigation Combinations of the above (integrated)

7 Principles of navigation Basic navigation parameters: Altitude (barometric or radar) Speed in the X, Y and Z axes Indicated air speed (IAS), Mach number (M), and true air speed (TAS) Heading and track Position in latitude and longitude Way-points


9 9 Outline 1. Introduction 2. Radio navigation 3. Inertial navigation 4. Satellite navigation 5. Integrated navigation 6. Instrument landing system 7. In-class exercises

10 Radio navigation Radio navigation aids include: VHF omnirange (VOR) Distance-measuring equipment (DME) Non-distance beacons (NDB) Tactical air navigation (TACAN) VORTAC (combined TACAN and VOR) Long range navigation (LORAN-C)

11 Radio Navigational Aids Navigation systems are the basis for an aircraft's ability to get from one place to another and know where it is and what course to follow. It's more than just maps. The closest thing today's automobiles come to an aviation navigation system is the "navigation center" some automobiles come with. These computers establish an automobile's position via satellite and place the position on a moving map. Intelligence programmed into the system allows the driver to navigate to destination by executing instructions provided by the system. Historically, aircraft navigated by means of a set of ground-based beacons, each broadcasting on its own frequencies. Aircraft systems could tune into the frequencies of two of these beacons and fly between them (from one beaconto the next). Knowing where the aircraft is between two of these beacons allows the aircraft to know where it is in a global sense. Since the 1980s, aircraft systems have evolved towards the use of satellite navigation.


13 Non Directional Beacon (NDB)

14 Purpose It is used with direction finding equipment in the aircraft to provide bearing information of a location on the air route or of an airport. The NDB equipment is installed en-route areas as well as on the airports to provide navigational guidance to the pilot.

15 NDB: Operating Frequency: ICAO has assigned Low and Medium Frequency band of 200– 1750 KHz for NDB operation; where as most of NDB equipments are found operating within frequency band of 200-525 KHz.

16 NDB: Construction NDB consists of LF/MF Transmitter LF/MF Antenna and Monitor Transmission It radiates a non-directional pattern permitting reception from any point within service range of the facility (usually 200 NM). Station identification code in the form of two letter Morse Code is also transmitted by the NDB.

17 NDB: Airborne Indication An airborne radio direction finding (RDF) equipment once tuned to the signal indicates bearing of the NDB transmitter with respect to aircraft heading. Bearing Indicator displays the bearing of the station relative to the nose (heading) of the aircraft. Relative Bearings the angle formed by the line drawn through the center line of the aircraft and a line drawn from the aircraft to the radio station. Magnetic Bearings the angle formed by a line drawn from aircraft to the radio station and a line drawn from the aircraft to magnetic north (Bearing to station)

18 NDB: Relative and Magnetic Bearing

19 NDB: Airborne Equipment Airborne equipments that interacts with NDB (ground station) is called Automatic Direction Finder (A.D.F) and indicates bearing on a full 360 degree radial.

20 NDB: Airborne Equipment - Samples

21 NDB: ADF Airborne Indicators

22 VHF Omni Range (VOR)

23 VOR Purpose It is a radio aid that provides, with interaction of airborne equipment, information about azimuth, the course and TO-FROM to the pilot

24 VOR: Information AZIMUTH in VOR is a clockwise angle between magnetic north and the line connecting the VOR and the aircraft. The indication is displayed on an “Omni Bearing Indicator” in the aircraft. The COURSE is the information whether aircraft is flying to the left or right of, or exactly on the pre-selected course line. The course information is displayed on a “Flight Path Deviation Indicator”. TO-FROM indication tells the pilot whether an aircraft is approaching to or moving away from VOR stations

25 VOR

Download ppt "Navigational Systems. Introduction Objectives of navigation: Know your position Efficient use of fuel Maintain a flight schedule Avoid other air traffic."

Similar presentations

Ads by Google