Download presentation

1
**Review of Trigonometry**

Appendix D.3

2
**After this lesson, you should be able to:**

work in radian measure find reference angles use and recreate the unit circle to find trig values of special angles recognize and sketch the graphs of sine, cosine and tangent use the Pythagorean trig identities and reciprocal identities to simplify trig expressions solve basic trig equations

3
**Angles initial ray on x-axis**

terminal ray Standard position of an angle (0, 0) x acute angles angles between 0 and /2 radians obtuse angles angles between /2 and radians co-terminal angles angles that share the same terminal ray Ex: /2 and -3/2

4
**Measuring Angles Positive angles measured counterclockwise**

Negative angles measured clockwise

5
Radian Measure Radian measure of a central angle in the unit circle is the length of the arc of the sector. The length of the sector r = 1 Unit circle r s = r circle with radius r Arc Length is

6
**Definitions of Trig Functions**

x y r (x,y) Circular Function Definitions

7
**Quadrant Signs for Trig Functions**

Quad II: Sine and cosecant are + Quad I: All trig functions are + Quad III: Tangent and cotangent are + Quad IV: Cosine and secant are +

8
**Common 1st Quadrant Angles**

Degrees 0° 30° 45° 60° 90° Radians Sin Cos Tan

9
**Unit Circle Function Definitions**

1 y x r = 1 Unit circle

10
**Unit Circle with Special Angles**

0° 360 ° 30 ° 45 ° 60 ° 330 ° 315 ° 300 ° 120 ° 135 ° 150 ° 240 ° 225 ° 210 ° 180 ° 90 ° 270 ° For a positive angle. r = 1 Remember: x = cos, y = sin

11
**Reciprocal Identities**

12
**Trigonometric Identities & Formulas**

Note: Those written in blue should be memorized.

13
Graph of Sine Graph the function y = sin x over the interval [-2, 2]. State its amplitude, period,domain and range. x y

14
Graph of Cosine Graph the function y = cos x over the interval [-2, 2]. State its amplitude, period,domain and range. x y

15
Graph of Tangent Graph the function y = tan x over the interval [-2, 2]. State its period,domain and range. x y

16
**Practice with Conversions**

Example: Convert 850° to exact radian measure. Example: Convert -34/15 to degree measure.

17
**Practice with Trig Functions**

Example: Given a point on the terminal side of in standard position, find the exact value of the six trig. functions of . P (-4, -3)

18
**Practice with Trig Functions**

Example: Given the quadrant and one trigonometric function value of in standard position, find the exact value of the other five trig. functions. A. Quadrant I; tan = 5

19
**Practice with Trig Functions**

B. Quadrant III; cot = 1

20
**Solving Basic Trig Equations**

Example 1 Solve the equation without using a calculator.

21
**Solving Basic Trig Equations**

Example 2 Solve the equation without using a calculator.

22
**Homework Exercises for Appendix D.3: #1-7 all, 11-19 all, 27-35 odd**

Appendix D.3 can be found online at the textbook site and also on the CD provided with your text.

Similar presentations

Presentation is loading. Please wait....

OK

Trigonometric Functions on the

Trigonometric Functions on the

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on evolution of human resource management Ppt on impact of unemployment in india Ppt on cloud computing download Ppt on weather and climate for kids Ppt on high level languages of computer Ppt on power grid india Ppt on product advertising images Ppt on 2 dimensional figures and 3 dimensional slides google Ppt on preservation of public property search Download ppt on pulse code modulation pcm