Presentation is loading. Please wait.

Presentation is loading. Please wait.

SESC STLN June 20, 2014 Diane Johnson

Similar presentations

Presentation on theme: "SESC STLN June 20, 2014 Diane Johnson"— Presentation transcript:

1 SESC STLN June 20, 2014 Diane Johnson

2 Introductions Diane Johnson – –

3 Session Goal Begin to develop a shared vision of the practices in action.

4 The framework is designed to help realize a vision for education in the sciences and engineering in which students, over multiple years of school, actively engage in science and engineering practices and apply crosscutting concepts to deepen their understanding of the core ideas in these fields. A Framework for K-12 Science Education p. 1-2 A New Vision of Science Learning that Leads to a New Vision of Teaching

5 “…students cannot fully understand scientific and engineering ideas without engaging in the practices of inquiry and the discourses by which such ideas are developed and refined. At the same time, they cannot learn or show competence in practices except in the context of specific content.” – A Framework for K-12 Science Education, pg. 218

6 3-D Model = Science Performance at the Intersection 3D Student Performances 1. Instruction 2. Assessment 3. Instructional Materials 4. Professional Development Science and Engineering Practices Crosscutting Concepts Disciplinary Core Ideas

7 Conceptual Shifts in the NGSS 1.K–12 science education should reflect the real world interconnections in science 2. Science and Engineering Practices and Crosscutting Concepts should not be taught in a vacuum; they should always be integrated with multiple core concepts throughout the year 3. Science concepts build coherently across K-12 4. The NGSS focus on deeper understanding and application of content 5. Integration of science and engineering 6. Designed to prepare students for college, careers, and citizenship. 7. Coordination with Common Core State Standards

8 Guiding Principles Students in K-12 should engage in all of the eight practices over each grade band. Practices grow in complexity and sophistication across the grades. Each practice may reflect science or engineering. Practices represent what students are expected to do, and are not teaching methods or curriculum. The eight practices are not separate; they intentionally overlap and interconnect. Performance expectations focus on some but not all capabilities associated with a practice. Science and Engineering Practices

9 Science Teaching and Learning What are students and teachers doing in NGSS-focused classrooms? Read the teacher scenario and mark up the text – What is the teacher doing? (highlight) – What are the students doing? (underline) – What is the science focus? How would you characterize this classroom?

10 What makes things sink or float? The story so far … – Two lessons – Students think: heavy things sink and light things float. Lesson 3 of 6 – Pick up with one piece of Lesson 2 – Experience will take 2 class periods

11 What makes things sink or float?

12 Traffic Light Read each of the “I can” statements and traffic light your current understanding in the PRE column. – Red means stop I don’t understand – Yellow means slow down I need more practice, but I’m getting there. – Green means go! I’ve got it! Remember that we are just starting the unit. It is okay to not know!

13 Becoming Familiar with the Cubes

14 1.Record your ideas. What will you think about to make your predictions? 2.Predict whether each of the cubes will sink or float. Mark your prediction on the table. Be sure to share your reasoning with your partner(s). 3.For our purposes…sinking blocks are completely submerged and touch the bottom of the container and floating blocks do not. 4.Place each of the cubes in the water and note on Student pg. 2.1 which ones sink and which ones float.

15 Recording Results

16 Cube Combination (Create two, three, four, and five block combinations) Prediction (sinks/floats) Quantitative Results (combined mass in grams and total volume in number of cubes) Qualitative Results (sinks/floats) 2 blocks Oak and Nylon Sink (because oak is the heaviest wood and nylon sank) 37.2 g

17 Representing Your Data PLOT your results on an overhead transparency Blue = Floaters Red = Sinkers

18 Compile Class Results Use a blue and red pen/pencil to transfer data from the class results to your scatter plot.

19 Identify Floaters and Sinkers

20 Interpret Floaters and Sinkers

21 A Caption for Floaters and Sinkers


23 Overarching Question What can we now say about our overarching question? What makes things sink or float?

24 Day 4 of Unit – What makes things sink or float?

25 Scientific Explanations What are the components of a scientifically-oriented explanation? Components from research about scientists’ work: – Make a claim that answers the question – Provide evidence for the claim from the data collected or available – Provide reasoning that links the evidence to the claim through science concepts (e.g., laws, principles, theories) or ideas Qualities of the communication – Use precise and accurate scientific language – Write clearly so that anyone interested in the explanation can understand it.

26 Try it … Which singer is better? – A) Rhianna or B) Beyoncé? – A) Dierk or B) Blake? – A) Usher or B) Jay-Z? – A) Sinatra or B) Buble? – A) Streisand or B) Dion? Make your claim…A or B and write in a complete sentence. Provide evidence to support your claim – What is “specific” about your particular choice? – Your statements have to be about the individual Support with reasoning (think about what makes a good singer) – Good singers have great breath control – Good singers have a wide vocal range – Good singers have good pitch and rhythm – Good singers are able to help the audience connect with the song

27 Which singer is better? ClaimEvidenceReasoning (Principles) Beyonce is a better singer than Rhianna. Beyonce appeals to me, to my son, and to my niece more than Rhianna. Great performers appeal to a wide audience. Beyonce’s songs have lyrics that tell a story and the rhythms draw me in, so that I just want to dance. Great performers help audiences connect with the song.

28 Patterns in Data Individually Note any patterns you identified in your I 2 statements – Identify patterns that are specific to THIS data set and record on a sticky note (1 idea/sticky note). Add an example from the data if it’s not evident in the statement. Identify patterns that are generalizable to a variety of situations and record on a sticky note (1 idea/sticky note) In Your Team Share your sticky notes and organize on the T-chart Specific patterns Generalizable patterns

29 Constructing a Scientific Explanation

30 Reading Read Part 1 and highlight science concepts Add science concepts from the reading to the science concepts column of the explanation tool. Make sure you match the concept with an evidence statement.

31 Example EvidenceScience Concept(s) The mass of a sinking combination of 4 cubes is XX, and the mass of a floating combination of 2 cubes is XX. The mass of block combinations that can float increases as the number of blocks increases. The threshold between sinking and floating for a two cube combination is between about 31 g and 33 g, and for a three block combination between about 46 g and 61 g. Density is the ratio of mass to volume of a material.

32 Write Your Explanation Use your evidence and science concepts to make a claim that answers the question. Write your explanation as a paragraph in the space provided.

33 Share Your Ideas … Share your explanation in your small group. Work on a group explanation and record it on chart paper.

34 Gallery Walk to Review Explanations

35 Traffic Light

36 Meta Moment What could one learn through this experience? What aspect of the session contributed to the learning (or not)?

37 NGSS Connections to the Unit

38 Science and Engineering Practices Which of the practices were in the foreground? Why do you think this? Of those practices, which elements of the practice were highlighted? (Be discerning!)

39 Ways to Use the Identify and Interpret (I 2 ) Strategy

40 Teaching the I 2 Strategy



43 CCCR Consider-Contribute-Consult-Revise

44 Teaching the Strategy Insist that students follow the “rules” Insist that students do each step separately at first. Model the strategy. Use the different colors as a formative assessment strategy.


46 Explanation Tool How might this tool help students achieve the expectations of Practices? Why is claim-evidence-reasoning sequenced as it is in the tool? How might this tool help students achieve the elements in constructing explanations?

47 Wrap-up What did you find easy, hard, interesting, or perplexing about developing conceptual understanding through the practices? What did you learn about the practices themselves? What questions do you have?

48 Upcoming Opportunities http://www.uky.ed u/P12MathScience /

49 Upcoming Opportunities

50 Contact Information Diane Johnson – – – @MDHJohnson Thank you for the opportunity to work with you today!

Download ppt "SESC STLN June 20, 2014 Diane Johnson"

Similar presentations

Ads by Google