Download presentation

Presentation is loading. Please wait.

Published byJulianna Veronica Newman Modified about 1 year ago

1
**An introduction to prey-predator Models**

Lotka-Volterra model Lotka-Volterra model with prey logistic growth Holling type II model

2
**Generic Model f(x) prey growth term g(y) predator mortality term**

h(x,y) predation term e prey into predator biomass conversion coefficient

3
**Lotka-Volterra Model r prey growth rate : Malthus law**

m predator mortality rate : natural mortality Mass action law a and b predation coefficients : b=ea e prey into predator biomass conversion coefficient

4
**Lotka-Volterra nullclines**

5
**Direction field for Lotka-Volterra model**

6
**Local stability analysis**

Jacobian at positive equilibrium detJ*>0 and trJ*=0 (center)

7
**Linear 2D systems (hyperbolic)**

8
**Local stability analysis**

Proof of existence of center trajectories (linearization theorem) Existence of a first integral H(x,y) :

9
Lotka-Volterra model

10
Lotka-Volterra model

11
**Hare-Lynx data (Canada)**

12
**Logistic growth (sheep in Australia)**

13
**Lotka-Volterra Model with prey logistic growth**

14
**Nullclines for the Lotka-Volterra model with prey logistic growth**

15
**Lotka-Volterra Model with prey logistic growth**

Equilibrium points : (0,0) (K,0) (x*,y*)

16
**Local stability analysis**

Jacobian at positive equilibrium detJ*>0 and trJ*<0 (stable)

17
**Condition for local asymptotic stability**

18
**Lotka-Volterra model with prey logistic growth : coexistence**

19
**Lotka-Volterra with prey logistic growth : predator extinction**

20
**Transcritical bifurcation**

(K,0) stable and (x*,y*) unstable and negative (K,0) and (x*,y*) same (K,0) unstable and (x*,y*) stable and positive

21
**Loss of periodic solutions**

coexistence Predator extinction

22
**Functional response I and II**

23
Holling Model

24
**Existence of limit cycle (Supercritical Hopf bifurcation)**

Polar coordinates

25
Stable equilibrium

26
At bifurcation

27
**Existence of a limit cycle**

28
**Supercritical Hopf bifurcation**

29
**Poincaré-Bendixson Theorem**

A bounded semi-orbit in the plane tends to : a stable equilibrium a limit cycle a cycle graph

30
Trapping region

31
**Trapping region : Annulus**

32
**Example of a trapping region**

Van der Pol model (l>0)

33
Holling Model

34
**Nullclines for Holling model**

35
**Poincaré box for Holling model**

36
**Holling model with limit cycle**

37
**Paradox of enrichment When K increases : Predator extinction**

Prey-predator coexistence (TC) Prey-predator equilibrium becomes unstable (Hopf) Occurrence of a stable limit cycle (large variations)

38
**Other prey-predator models**

Functional responses (Type III, ratio-dependent …) Prey-predator-super-predator… Trophic levels

39
**Routh-Hurwitz stability conditions**

Characteristic equations Stability conditions : M* l.a.s.

40
**Routh-Hurwitz stability conditions**

Dimension 2 Dimension 3

41
3-trophic example

42
**Interspecific competition Model**

Transformed system

43
Competition model

Similar presentations

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google