Presentation is loading. Please wait.

Presentation is loading. Please wait.

Self-sustaining energy cook stove for un-electrified rural areas

Similar presentations

Presentation on theme: "Self-sustaining energy cook stove for un-electrified rural areas"— Presentation transcript:

1 Self-sustaining energy cook stove for un-electrified rural areas
Presented By: Risha Mal, Rajendra Prasad, V.K. Vijay, Amit Ranjan Verma, Ratnesh Tiwari Centre for Rural Development and Technology Indian Institute of Technology, New Delhi, India In Engineers in Technical and Humanitarian Opportunities of Service (ETHOS) 2014 January 25-26,Northwest University, th Ave. N.E., Kirkland, WA 98033

2 Population Distribution in India
The Rural and Urban population in India was last reported at and 30.1 (% of total population) respectively in 2010, according to a Indian Census published in The growth rate of population in rural and urban areas was % and 31.80% respectively.

3 INDIAN Rural Scenario of cooking
People have gadgets like mobile, motor bike, TV etc, and use sanitary toilets but still use mud stove for cooking!!!!! We need to bridge the gap by technology on stoves with multiple applications to make it acceptable.

4 Utilization of the waste heat
Heat Losses Utilization of the waste heat THERMOELECTRIC GENERATOR Useful electricity

5 Power Generation There are 2 modes of Power generation from a thermoelectric module Works as a cooler ,which can also work as a generator(proposed by D.M Rowe) Peltier Module TE module Both works vice versa Seebeck Module Works as a generator, which can also work as a cooler

6 Peltier couple - + + - + - - + - - - - + + + Dense electron and holes
Heat Released N-type Bi₂Te₃ p-type Bi₂Te₃ - + + - + - Hole Flow Electron Flow - + - - - - + + + Heat Absorbed

7 Seebeck couple + - - + - + - + - + - - - + + Dense electron and holes
Cold Side N-type Bi₂Te₃ p-type Bi₂Te₃ + - - + - Hole Flow + Electron Flow - + - + - - - + + Hot Side Load

8 Materials The TE couples are connected electrically in series because a single couple produce power in mW, series connection of couples increase the overall voltage generated. They are connected thermally in parallel to reduce the lattice conductivity so that the cold side remains cooler. 2. Semiconductor materials consisting of p-type(excess holes) and n- type(excess e-) are used for fabrication because if two couples consist of metal the voltages gets cancelled by each other resulting in very low power. 3. For generator, the suggested materials for TEG fabrication are PbTe, SiGe, TAGS, Inorganic clathrates, Magnesium group IV compounds, Skutterudite thermoelectrics, Oxide thermoelectrics, Half Heusler alloys and many more. 4. Commercially available TEG are of Bi₂Te₃ with temperature tolerance of 250˚C with Figure of merit (ZT)=1. The PbTe modules are also available in the market with high temperature tolerance of 600 ˚C.

9 Potential Markets of commercial TE modules
There are many companies of TEG manufacturer. Some of them can be listed with their high power module: Company Name 𝑻 𝒉 𝑻 𝒄 𝑽 𝒐𝒄 Efficiency(%) Power Marlow Industries Inc., USA 230 30 9.56 5.03 2-7.95 Thermonamic Electronics (Jiangxi) Corp., Ltd,China 14.4 - Hi-Z Technology, USA 50 20 4.98 Tellurex, USA 8.6 14.1

10 Prior Stove Researches Summary
Authors Type of cooling Type of module No. of modules Power/module J.C Bass,Killander 1966 Forced air cooling Seebeck 2 4.76 V stepped up to 13.5V Nuwayhid 2003 Natural air cooling Peltier 1 1W Nuwayhid 2005 4 4.2W Lertsatitthanakorn 2007 2.4W Mastbergen 2007 Forced air cooling(1W) +4 W Biolite 2009 +2W Champier “TEGBioS” 2009 Water cooling 5W Champier “TEGBioSII” 2009 9.5W 7.5W regulated Rinalde 2010 10W RTI TECA 2010 NM 1 W

11 Benchmark Testing Cooking pot Power supply Battery Cold sink TEG
Glasswool is omitted for simplicity Heat Plate Temperature regulation nobe

12 PROTOTYPE TESTING HZ-9 module is selected for this operation due to high temperature tolerance, low cost of 20$ per module when taken in bulk of 10K. Cost of electronics and hot/cold sink of $ 20 Cost of the cookstove will be not more than $48/ 3000INR

13 Comparison of Peltier modules (TEC) working as Seebeck generator (TEG)
𝑽 𝒐𝒄 (V) Power(W) Cost($)/module Peltier module 150 55 1.5 0.5 12 HZ-14 200 100 0.7 3 45 HZ-9 2.8 80 ** Factor of pressure between the hot and cold side of the modules should be maintained.

14 Voltage boost The voltage that is generated is not sufficient for powering mobile charging or lighting a torch. A DC-DC boost converter is connected to boost the input voltage from 0.9 V to output stable voltage of 5 V. Work on ultra low power input voltage of 40mV and output stable voltage of 5 V DC-DC converter is still on progress.

15 Fig: 1. HZ-9 (cold side), 2. ceramic wafers, 3
Fig: 1. HZ-9 (cold side), 2. ceramic wafers, 3. benchmark testing with TERI mud stove with fan running by TEG, 4. cold sink type, 5. Hot side heat collecting plate + TEG mounted for bench mark testing. 6. LED glowing by TEG+DC-DC converter,

16 Prototype ready in 3 months
ROAD MAP Appropriate TEG has been selected for operation. Hot side heat collecting plate have been designed. Cold side sink modeling is yet to be done. Bench mark testing of TEG and running different appliances with TEG + battery + DC-DC converter on testing phase. Forced draft Stove designing is in progress. TEG is yet to be placed on the stove with proper temperature determination of the stove. Our Goal is to develop a fully self sustaining forced draft cook stove and running a light/mobile. Prototype ready in 3 months

17 Illuminating prospective Rural Home by cookstove using teg

18 References Books [1] H.J. Goldsmid Introduction to Thermoelectricity, Methuen Monograph, London, [2] D.M. Rowe ‘Handbook of Thermoelectrics’, CRC Press. [3] Schott Lee, ‘Thermal Design Heat Sinks Thermoelectrics Heat Pipes Compact Heat Exchangers and Solar Cells’ [4] Rowe, D. M., Bhandari, C. M., Modern Thermoelectrics. London, Holt Rinehart and Winston, 1983 Journals [5] Killander A, Bass JC. A stove-top generator for cold areas. In: Proceedings of the15th international conference on thermoelectrics; 1996 Mar 26–29; New York, USA. New York: IEEE; [6] Mastbergen D. Development and optimization of a stove-powered thermoelectric generator. Colorado State University; [7] Champier D, Bedecarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy 2011;36:1518–26. [8] Champier D, Bedecarrats JP, Rivaletto M, Strub F. Thermoelectric powergeneration from biomass cook stoves. Energy 2010;35:935–42. [9] Cedar, Jonathan M. (Scarsdale, NY, US), Drummond, Alexander H. (Austin, TX, US),"Portable combustion device utilizing thermoelectrical generation", , 2012, [10] David Michael Rowe , Thermoelectric waste heat recovery as a renewable energy source, International Journal of Innovations in Energy Systems and Power, Vol. 1, no. 1 (November 2006) [11] David Stokes, Michael Mantini, Ryan Chartier, Charles Rodes,’ Design and Testing of a Thermoelectric Enhanced Cookstove Add-on (TECA) for Indigenous Biomass Stoves in Kenya’RTI International,2009. [12] Nuwayhid, R.Y., Hamade, R., Design and testing of a locally made loop-type thermosyphonic heat sink for stove-top thermoelectric generators. Renew. Energy 30, 1101–1117. [13] Nuwayhid, R.Y., Rowe, D.M., Min, G., Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renew. Energy 28, 205–222. [14] Min, G., Rowe, D. M., “Optimization of Thermoelectric Module Geometry for ‘Waste Heat’ Electric Power Generation,” Journal of Power Sources, Vol. 38, 1992, [15] Lertsatitthanakorn C. Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator. Bioresource Technology 2007;98:1670–4. [16] Rowe DM. Thermoelectric waste heat recovery as a renewable energy source. International Journal of Innovations in Energy Systems and Power 2006;1(1). [17] Rida Y. Nuwayhid, Alan Shihadeh , Nesreen Ghaddar,’ Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling’, Energy Conversion and Management 46 (2005) 1631–1643 [18] S.M. O’Shaughnessy , M.J. Deasy , C.E. Kinsella , J.V. Doyle , A.J. Robinson, ‘Small scale electricity generation from a portable biomass cookstove: Prototype design and preliminary results’ Applied Energy,

19 Thank you

Download ppt "Self-sustaining energy cook stove for un-electrified rural areas"

Similar presentations

Ads by Google