Download presentation

Presentation is loading. Please wait.

Published byBritney Wilkinson Modified over 2 years ago

1
Prime Factorization, Greatest Common Factor, & Least Common Multiple EDTE 203

2
Introduction Determining Prime Factorization Determining the Greatest Common Factor (GCF) Determining the Least Common Multiple (LCM)

3
Introduction The facts you will learn will give you a variety of information about prime factorization, GCF, and LCM. This lesson will show you different ways to calculate the prime factors of composite numbers. This lesson will show you how to use the prime factors to calculate the GCF and LCM of two composite numbers. You will learn how prime factorization equates to everyday life.

4
Essential Question The Essentials We Hope To Discover

5
The Essential Question How do prime factorization, greatest common factor, and least common multiple help you to understand the world? 2 3 3 2 5 10 2 6 180 18 3 5

6
Background Information The Basic facts you need you to know about prime factorization, GCF, and LCM

7
History of Prime Factorization, Greatest Common Factor, & Least Common Multiple Originated around 300 B.C. through the “Theorem of (unique) prime factorization” “Theorem of (unique) prime factorization” Started with Euclid’sEuclid’s “Property of Natural Numbers” (e.g., 24= 2∙2∙2∙3)

8
History of Prime Factorization, Greatest Common Factor, & Least Common Multiple cont. The Theorem of Prime Factorization was further proven through the work of GaussGauss and Ernst Eduard KummerErnst Eduard Kummer Prime Factorization is the foundation for finding the Greatest Common Factor and the Least Common Multiple

9
Solving for Prime Factorization, GCF, and LCM. There are 2 Ways determine the prime factors – Factor Tree Method Factor Tree Method – Stacked Method Stacked Method Determining the GCF and LCM – GCF GCF – LCM

10
Determining the Prime Factors using the Factor Tree Method

11
Factor Tree Method 96 8× 12 4 × 2 2 × 6 2 × 2 2 × 3 2×2×2×2×2×3 = 96 96 8× 12 4 × 2 2 × 6 2 × 2 2 × 3 2×2×2×2×2×3 = 96 The CORRECT answer: – must be only PRIME numbers – must multiply to give the specified quantity

12
Factor Tree Method cont. There is more than one way to solve the same problem 96 8× 12 4 × 2 2 × 6 2 × 2 2 × 3 96= 2×2×2×2×2×3 96 8× 12 4 × 2 2 × 6 2 × 2 2 × 3 96= 2×2×2×2×2×3 96 4 × 24 2 × 2 6 × 4 2 × 3 2 × 2 96= 2×2×2×2×2×3 96 4 × 24 2 × 2 6 × 4 2 × 3 2 × 2 96= 2×2×2×2×2×3

13
Determining the Prime Factors using The Stacked Method

14
The Stacked Method 1)Begin by dividing the specified quantity by any PRIME number that divides equally, (hint; if it is even try dividing by 2) 2)Reduce the quotient, dividing again by a PRIME number 3)Continue reducing the quotient until both the divisor and the quotient are prime numbers. 4)Re-write the prime numbers as a multiplication problem. (if the final quotient is 1 it doesn’t need included in the answer) The CORRECT answer: – must be only prime numbers – must multiply to give the specified quantity

15
Determining the Greatest Common Factor Of Two Composite Numbers

16
Solving for the Greatest Common Factor 36 3 × 12 3 × 4 2 × 2 2 × 2 × 3 × 3 = 36 54 6 × 9 3 × 2 3 × 3 2 × 3 × 3 × 3 = 54 1)Find the prime factorization of the given quantities 2)Determine what factors they have in common.

17
Determining the Least Common Multiple Of Two Composite Numbers

18
Solving for the Least Common Multiple 36 3 × 12 3 × 4 2 × 2 2 × 2 × 3 × 3 = 36 54 6 × 9 2 × 3 3 × 3 2 × 3 × 3 × 3 = 54

19
Finding the Greatest Common Factor of Two Numbers must be common to both numbers. We We are looking for a factor. The factor need to pick the greatest of such common factors.

20
Method 1 The GCF of 36 and 90 1) List the factors of each number. 36: 1 2 3 4 6 36 18 24 9 2) Circle the common factors. 90: 1 2 3 5 6 9 90 45 30 18 15 10 3) The greatest of these will be your Greatest Common Factor: 18

21
Method 2 The GCF of 36 and 90 1) Prime factor each number. 36 = 2 ● 2 ● 3 ● 3 2) Circle each pair of common prime factors. 90 = 2 ● 3 ● 3 ● 5 3) The product of these common prime factors will be 2 ● 3 ● 3 = 18 the Greatest Common Factor:

22
Finding the Least Common Multiple of Two Numbers must be common to both numbers. We We are looking for a multiple. The multiple need to pick the least of such common multiples.

23
Method 1 The LCM of 12 and 15 1) List the first few multiples of each number. 12: 12 24 36 48 60 72 84 90 108 120 2) Circle the common multiples. 15: 15 30 45 60 75 90 105 120 135 3) The least of these will be your Least Common Multiple: 60

24
Method 2 The LCM of 12 and 15. 1) Prime factor each number. 12 = 2 ● 2 ● 3 2) Circle each pair of common prime factors. 15 = 5 ● 3 4) Multiply together one factor from each circle to get the 3 ● 2 ● 2 ● 5 = 60 Least Common Multiple : 3) Circle each remaining prime factor. Note that the common factor, 3, was only used once.

25
Method 3: Find both GCF and LCM at Once. 1) Make the following table. 7290 The GCF and LCM of 72 and 90 2) Divide each number by a common factor. 3) Divide the new numbers by a common factor. Repeat this process until there is no longer a common factor. 9 8 10 2 4 5 The product of the factors on the left is the GCF: 9 ● 2 = 18 The product of the factors on the left AND bottom is the LCM: 9 ● 2 ● 4 ● 5 = 360

26
Journal & Summary Nine people plan to share equally 24 stamps from one set and 36 stamps from another set. Explain why 9 people cannot share the stamps equally. What's is the LCM for two numbers that have no common factors greater than 1? Explain your reasoning.

Similar presentations

Presentation is loading. Please wait....

OK

Factors & Multiples Lesson 1 - Factors & GCF

Factors & Multiples Lesson 1 - Factors & GCF

© 2018 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on career options in humanities Ppt on animals our friends Ppt on question tags games Ppt on religious tourism in india Free ppt on planets in the solar system Ppt on six sigma green belt Download ppt on my role model Ppt on rc phase shift oscillator Ppt on area of a circle Ppt on joints of human body