Download presentation

Presentation is loading. Please wait.

Published byChristian Cannon Modified over 4 years ago

1
CSC 8520 Spring 2010. Paula Matuszek CS 8520: Artificial Intelligence Solving Problems by Searching Paula Matuszek Spring, 2010 Slides based on Hwee Tou Ng, aima.eecs.berkeley.edu/slides-ppt, which are in turn based on Russell, aima.eecs.berkeley.edu/slides-pdf. Diagrams are based on AIMA.

2
2 CSC 8520 Spring 2010. Paula Matuszek Search The basic concept of search views the state space as a search tree –Initial state is the root node –Each possible action leads to a new node defined by the transition model –Some nodes are identified as goals Search is the process of expanding some portion of the tree in some order until we get to a goal node The strategy we use to choose the order to expand nodes defines the type of search

3
3 CSC 8520 Spring 2010. Paula Matuszek Search in an Adversarial Environment Iterative deepening and A* useful for single- agent search problems What if there are TWO agents? Goals in conflict: –Adversarial Search Especially common in AI: –Goals in direct conflict –IE: GAMES.

4
4 CSC 8520 Spring 2010. Paula Matuszek Games vs. search problems "Unpredictable" opponent specifying a move for every possible opponent reply Time limits unlikely to find goal, must approximate Efficiency matters a lot HARD. In AI, typically "zero sum": one player wins exactly as much as other player loses.

5
5 CSC 8520 Spring 2010. Paula Matuszek Types of games Deterministic Stochastic Perfect Info Chess Monopoly Checkers Backgammon Othello Tic-Tac-Toe Imperfect Info Battleship Bridge Poker Scrabble

6
6 CSC 8520 Spring 2010. Paula Matuszek Tic-Tac-Toe Tic Tac Toe is one of the classic AI examples. Let's play some. A Tic Tac Toe game: –http://ostermiller.org/calc/tictactoe.htmlhttp://ostermiller.org/calc/tictactoe.html Try it, at various levels of difficulty. –What kind of strategy are you using? –What kind does the computer seem to be using? –Did you win? Lose?

7
7 CSC 8520 Spring 2010. Paula Matuszek Problem Definition Formally define a two-person game as: Two players, called MAX and MIN. –Alternate moves –At end of game winner is rewarded and loser penalized. Game has –Initial State: board position and player to go first –Successor Function: returns (move, state) pairs All legal moves from the current state Resulting state –Terminal Test –Utility function for terminal states. Initial state plus legal moves define game tree.

8
8 CSC 8520 Spring 2010. Paula Matuszek Tic Tac Toe Game tree

9
9 CSC 8520 Spring 2010. Paula Matuszek Optimal Strategies Optimal strategy is sequence of moves leading to desired goal state. MAX's strategy is affected by MIN's play. So MAX needs a strategy which is the best possible payoff, assuming optimal play on MIN's part. Determined by looking at MINIMAX value for each node in game tree.

10
10 CSC 8520 Spring 2010. Paula Matuszek Minimax Perfect play for deterministic games Idea: choose move to position with highest minimax value = best achievable payoff against best play E.g., 2-ply game:

11
11 CSC 8520 Spring 2010. Paula Matuszek Minimax algorithm

12
12 CSC 8520 Spring 2010. Paula Matuszek Properties of minimax Complete? Yes (if tree is finite) Optimal? Yes (against an optimal opponent) Time complexity? O(b m ) Space complexity? O(bm) (depth-first exploration) For chess, b ≈ 35, m ≈100 for "reasonable" games exact solution completely infeasible Even tic-tac-toe is much too complex to diagram here, although it's small enough to implement.

13
13 CSC 8520 Spring 2010. Paula Matuszek Pruning the Search “If you have an idea that is surely bad, don't take the time to see how truly awful it is.” -- Pat Winston Minimax exponential with # of moves; not feasible in real-life But we can PRUNE some branches. Alpha-Beta pruning –If it is clear that a branch can't improve on the value we already have, stop analysis.

14
14 CSC 8520 Spring 2010. Paula Matuszek α-β pruning example

15
15 CSC 8520 Spring 2010. Paula Matuszek α-β pruning example

16
16 CSC 8520 Spring 2010. Paula Matuszek α-β pruning example

17
17 CSC 8520 Spring 2010. Paula Matuszek α-β pruning example

18
18 CSC 8520 Spring 2010. Paula Matuszek α-β pruning example

19
19 CSC 8520 Spring 2010. Paula Matuszek Properties of α-β Pruning does not affect final result Good move ordering improves effectiveness of pruning With "perfect ordering," time complexity = O(b m/2 ) doubles depth of search which can be carried out for a given level of resources. A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

20
20 CSC 8520 Spring 2010. Paula Matuszek Why is it called α-β? α is the value of the best (i.e., highest- value) choice found so far at any choice point along the path for max If v is worse than α, max will avoid it prune that branch Define β similarly for min

21
21 CSC 8520 Spring 2010. Paula Matuszek The α-β algorithm

22
22 CSC 8520 Spring 2010. Paula Matuszek The α-β algorithm

23
23 CSC 8520 Spring 2010. Paula Matuszek "Informed" Search Alpha-Beta still not feasible for large game spaces. Can we improve on performance with domain knowledge? Yes -- if we have a useful heuristic for evaluating game states. Conceptually analogous to A* for single- agent search.

24
24 CSC 8520 Spring 2010. Paula Matuszek Resource limits Suppose we have 100 secs, explore 10 4 nodes/sec 10 6 nodes per move Standard approach: cutoff test: e.g., depth limit (perhaps add quiescence search) evaluation function = estimated desirability of position

25
25 CSC 8520 Spring 2010. Paula Matuszek Evaluation function Evaluation function or static evaluator is used to evaluate the “goodness” of a game position. –Contrast with heuristic search where the evaluation function was a non- negative estimate of the cost from the start node to a goal and passing through the given node The zero-sum assumption allows us to use a single evaluation function to describe the goodness of a board with respect to both players. –f(n) >> 0: position n good for me and bad for you –f(n) << 0: position n bad for me and good for you –f(n) near 0: position n is a neutral position –f(n) = +infinity: win for me –f(n) = -infinity: win for you DesJardins: www.cs.umbc.edu/671/fall03/slides/c8-9_games.ppt

26
26 CSC 8520 Spring 2010. Paula Matuszek Evaluation function examples Example of an evaluation function for Tic-Tac-Toe: f(n) = [# of 3-lengths open for me] - [# of 3-lengths open for you] where a 3-length is a complete row, column, or diagonal Alan Turing’s function for chess –f(n) = w(n)/b(n) where w(n) = sum of the point value of white’s pieces and b(n) = sum of black’s Most evaluation functions are specified as a weighted sum of position features: f(n) = w 1 *feat 1 (n) + w 2 *feat 2 (n) +... + w n *feat k (n) Example features for chess are piece count, piece placement, squares controlled, etc. Deep Blue (which beat Gary Kasparov in 1997) had over 8000 features in its evaluation function DesJardins: www.cs.umbc.edu/671/fall03/slides/c8-9_games.ppt

27
27 CSC 8520 Spring 2010. Paula Matuszek Cutting off search MinimaxCutoff is identical to MinimaxValue except 1. Terminal? is replaced by Cutoff? 2. Utility is replaced by Eval Does it work in practice? For chess: b m = 10 6, b=35 m=4 4-ply lookahead is a hopeless chess player! –4-ply ≈ human novice –8-ply ≈ typical PC, human master –12-ply ≈ Deep Blue, Kasparov

28
28 CSC 8520 Spring 2010. Paula Matuszek Deterministic games in practice Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used a precomputed endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 444 billion positions. Now plays perfectly, using a combination of alpha-beta search and db of 39 trillion end positions. Chess: Deep Blue defeated human world champion Garry Kasparov in a six-game match in 1997. Deep Blue searched 200 million positions per second, used very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply. Newer programs (Hydra and Rybka) may actually be better than any human player. Othello: human champions refuse to compete against computers, who are too good. Go: Just beginning to be good enough to play human champions. In go, b > 300, so most programs use pattern knowledge bases to suggest plausible moves, but MoGo also uses a Monte Carlo Tree Search, one of the first demonstrations of its value.

29
29 CSC 8520 Spring 2010. Paula Matuszek Non-Deterministic Games Alpha-Beta search assumes that each player plays perfectly and we know what the possible moves are. Suppose there is a chance element? In Backgammon, for instance, each player rolls dice, which determine the possible moves to be made.

30
30 CSC 8520 Spring 2010. Paula Matuszek Dealing with Chance Add a “chance” layer of nodes between each player’s move that captures the possible rolls and their probability Expand the minimax value to an “expected minimax value”: each node’s value is weighted by the probability of it occurring Therefore the “best” move is not the one whose evaluation is highest, but the one with a high evaluation which is also likely to happen.

31
31 CSC 8520 Spring 2010. Paula Matuszek Evaluation Functions for Chance With a deterministic alpha-beta minimax is concerned only with which value of our evaluation function is bigger; it is sufficient for our evaluation function to order the possibilities correctly. With an expectiminimax function, the size of the difference also matters; ideally, values indicate not only which move is better but how much better it is. Ideally, the evaluation function is a positive linear transformation of the probability of winning from that position.

32
32 CSC 8520 Spring 2010. Paula Matuszek Performance in Non-Deterministic Games We have expanded our search tree to include layers containing all possible dice rolls -- what is the performance hit? Basically, we now have O( b m b n ) where n is the number of different dice rolls. Ouch! Can in some cases still find a cutoff; if the probability of a node is low enough we may not need to determine its value. –Requires that we know the bounds on the evaluation function. Monte Carlo alternative

33
33 CSC 8520 Spring 2010. Paula Matuszek Summary Games are fun to work on! They illustrate several important points about AI perfection is unattainable must approximate good idea to think about what to think about

34
34 CSC 8520 Spring 2010. Paula Matuszek Search Summary For uninformed search, tradeoffs between time and space complexity, with iterative deepening often the best choice. For non-adversarial informed search, A* usually the best choice; the better the heuristic, the better the performance. For adversarial search, minimax with alpha-beta pruning is optimal where feasible Adding an evaluation-function-based cutoff increases range of feasibility. The better we can capture domain knowledge in the heuristic and evaluation functions, the better we can do.

Similar presentations

© 2019 SlidePlayer.com Inc.

All rights reserved.

To make this website work, we log user data and share it with processors. To use this website, you must agree to our Privacy Policy, including cookie policy.

Ads by Google