Download presentation

Presentation is loading. Please wait.

Published byFrancis Andrews Modified over 2 years ago

1
Subhash Khot Georgia Tech Ryan O’Donnell Carnegie Mellon SDP Gaps and UGC-Hardness for Max-Cut-Gain &

2
Max-Cut: Weighted graph H (say weights sum to 1). Find a subset of vertices A to maximize weight of edges between A and A c. A.059.183.097

3
When OPT is c, can you in poly-time cut s ? c s 1 1/2 1 [Trivial algorithm] [Karp’72]: 5/6 vs. 5/6 − 1/poly(n) NP-hard [Sahni-Gonzalez’76] [Goemans-Williamson’95]:.878 factor [Håstad+TSSW’97]: 17/21 vs. 16/21 NP-hard [Zwick’99/FL’01/CW’04]: 1/2 + ( /log(1/ )) [KKMO+MOO’05]: UGC-hardness.878 c.845 arccos(1−2c)/ Max-Cut- Gain

4
When OPT is c, can you in poly-time cut s ? c s 1/2 + 1/2 1/2 + ( /log(1/ )) 1/2 + (2/ ) 1/2 + (11/13) 1/2 + O( /log(1/ )) Theorem 1: SDP integrality gap in blue. Theorem 2: UGC-hardness there too. Theorem 3: Theorem 4: Other stuff.

5
Theme of the paper: Semidefinite programming integrality gaps arise naturally in Gaussian space. Can be translated into Long Code tests; ) UGC-hardness.

6
Semidefinite programming gaps Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: Goemans-Williamson: “For all H, s ¸ blah(c).” Proof: Given A, construct A via: (unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. 1. Pick G, rand. n-dim. Gaussian 2. Define A(x) = sgn(G ¢ A(x))

7
Semidefinite programming gaps Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: Feige-Langberg/Charikar-Wirth: “For all H, s ¸ blah(c).” Proof: Given A, construct A via: (unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. 1. Pick G, rand. n-dim. Gaussian 2. Define A(x) = sgn(G ¢ A(x))2. Define A(x) = F (G ¢ A(x)) F 1 −1−1

8
Semidefinite programming gaps Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: Goemans-Williamson: “For all H, s ¸ blah(c).” Proof: Given A, construct A via: (unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. 1. Pick G, rand. n-dim. Gaussian 2. Define A(x) = sgn(G ¢ A(x))

9
Semidefinite programming gaps Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: (unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. 1. Pick G, rand. n-dim. Gaussian 2. Define A(x) = sgn(G ¢ A(x)) Goemans-Williamson: “For all H, s ¸ blah(c).” Proof: Given A, construct A via:

10
Semidefinite programming gaps Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: (unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. Take A(x) = x / || x ||. Best A is A(x) = sgn(G ¢ x), for any G. Feige-Schechtman: “There exists H s.t. s · blah(c).” Proof: Take V = R n, w = picking (1−2c)-correlated Gaussians. (matches GW for c ¸.845) Proof: Symmetrization. [Borell’85]

11
Proof: Semidefinite programming gaps Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: (unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. Take A(x) = x / || x ||. This paper: “There exists H s.t. s · blah(c).” Proof: Take V = R n, w = picking (1−2c)-correlated Gaussians. (essentially matches FL/CW for c = 1/2 + ) Proof: Take V = R n, w = picking mixture of 2 corr’d Gaussian pairs. Best A is A(x) = sgn(G ¢ x), for any G.Best A is A(x) = F (G ¢ x), for any G.

12
Semidefinite programming gaps Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: (unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. Take A(x) = x / || x ||. Best A is A(x) = sgn(G ¢ x), for any G. Feige-Schechtman: “There exists H s.t. s · blah(c).” Proof: Take V = R n, w = picking (1−2c)-correlated Gaussians. (matches GW for c ¸.845) Proof: Symmetrization. [Borell’85]

13
(unit n-dim. ball) c : = max E [ (½) − (½) A(x) ¢ A(y) ] A s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. Take A(x) = x / || x ||. Best A is A(x) = sgn(G ¢ x), for any G. Feige-Schechtman: “There exists H s.t. s · blah(c).” Proof: Take V = R n, w = picking (1−2c)-correlated Gaussians. (matches GW for c ¸.845) Proof: Symmetrization. [Borell’85] Long code (“Dictator”) Tests Weighted graph:H = (V, w : V £ V ! R ¸ 0 ) Assignments:A : V ! [−1,1] vs. A : V ! B n Compare: Weighted graph:H = ({−1,1} n, w : V £ V ! R ¸ 0 ) Assignments:A : {−1,1} n ! [−1,1] vs. A i (x) = x i far from all Dictators i ii

14
c : = max E [ (½) − (½) A(x) ¢ A(y) ] s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. Take A(x) = x / || x ||. Best A is A(x) = sgn(G ¢ x), for any G. Feige-Schechtman: “There exists H s.t. s · blah(c).” Proof: Take V = R n, w = picking (1−2c)-correlated Gaussians. (matches GW for c ¸.845) Proof: Symmetrization. [Borell’85] Long code (“Dictator”) Tests Compare: Weighted graph:H = ({−1,1} n, w : V £ V ! R ¸ 0 ) Assignments:A : {−1,1} n ! [−1,1] vs. A i (x) = x i far from all Dictators i ii KKMO/MOO: “There exists w s.t. s · blah(c).” Proof: w = picking (1−2c)-correlated bit-strings. Best A is A(x) = sgn(G ¢ x), for almost any G. Proof: Somewhat elaborate reduction to [Borell’85] (“Majority Is Stablest”)

15
c : = max E [ (½) − (½) A(x) ¢ A(y) ] s : = max E [ (½) − (½) A(x) ¢ A(y) ] A(x,y) Ã w vs. (matches GW for c ¸.845) Long code (“Dictator”) Tests Compare: Weighted graph:H = ({−1,1} n, w : V £ V ! R ¸ 0 ) Assignments:A : {−1,1} n ! [−1,1] vs. A i (x) = x i far from all Dictators i ii KKMO/MOO: “There exists w s.t. s · blah(c).” Proof: w = picking (1−2c)-correlated bit strings. Best A is A(x) = sgn(G ¢ x), for almost any G. Proof: Somewhat elaborate reduction to [Borell’85] (“Majority Is Stablest”) This paper: “There exists w s.t. s · blah(c).” (essentially matches FL/CW for c = 1/2 + ) Proof: w = picking mixture of 2 corr’d bit-string pairs. Best A is A(x) = F (G ¢ x), for almost any G. Proof: if |a i | is small for each i.

16
Conclusion: There is something fishy going on. What is the connection between SDP integrality gaps and Long Code tests?

Similar presentations

OK

CSE 421 Algorithms Richard Anderson Lecture 27 NP Completeness.

CSE 421 Algorithms Richard Anderson Lecture 27 NP Completeness.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Ppt on project management software Ppt on principles of peace building initiatives Ppt on world population day 2011 Download ppt on bill gates biography Ppt on power supply design Ppt on blood stain pattern analysis cases Kidney anatomy and physiology ppt on cells Games we play ppt on apple Ppt on non agricultural activities kenya Ppt on master slave jk flip flop