Presentation is loading. Please wait.

Presentation is loading. Please wait.

Amateur Space Communications Albert - N4ZFG Space Communications  Look at Project OSCAR History  Operating Modes  Prediction Software  How do I get.

Similar presentations


Presentation on theme: "Amateur Space Communications Albert - N4ZFG Space Communications  Look at Project OSCAR History  Operating Modes  Prediction Software  How do I get."— Presentation transcript:

1

2 Amateur Space Communications Albert - N4ZFG

3 Space Communications  Look at Project OSCAR History  Operating Modes  Prediction Software  How do I get started  Who Else Uses Amateur Satellites  Future Satellites

4 Russian Sputnik  Oct Sputnik Beacons on Mhz and MhzBeacons on Mhz and Mhz Near WWV signalsNear WWV signals Beeping signals onlyBeeping signals only

5 Moon Bounce (EME)  First Attempt by Amateurs in Space Communications W4AO, Ross Bateman; and W3GKP, William L. Smith transmitted signals at the moon and heard the return echoes of their own signal.W4AO, Ross Bateman; and W3GKP, William L. Smith transmitted signals at the moon and heard the return echoes of their own signal. Proved Space Communications (1953)Proved Space Communications (1953)

6 Balloon Flights  W6TNS Don Stoner proposed to build a spacecraft with a transponder on board in Feb 1961 QST Article  Used High Altitude Balloon With 6m input and 2m Output Repeater Payload Onboard

7 PROJECT OSCAR  In 1960 a group of radio amateurs in Sunnyvale California read Stoner’s article and created a group called Project OSCAR.  The OSCAR stood for Orbiting Satellite Carrying Amateur Radio.  Convince the U.S. Government that amateur satellites provide useful functions in the areas of scientific exploration, disaster communications, and science education.

8 OSCAR 1  The First Satellite Built by the Project OSCAR Group. It Transmitted a 140mW Beacon Signal on 2 Meters at 145 MHz. It Transmitted a 140mW Beacon Signal on 2 Meters at 145 MHz. The Sent the Signal “…...” “HI” in Morse Code. The Sent the Signal “…...” “HI” in Morse Code. Signal Speed Corresponded Inside Temperature. Signal Speed Corresponded Inside Temperature.  The Project OSCAR Group Worked with the U.S. Air Force to add the Amateur Satellite as an Auxiliary Payload. (Ballast)  The U.S. Air Force Launched OSCAR I as a First Ever Auxiliary Package that was Ejected From the Parent Spacecraft. Ejection Mechanism Subjected to Stress, Thermal, and Vibration Testing and Analysis and was Centered around a $1.15 Spring from Sears and Roebuck.Ejection Mechanism Subjected to Stress, Thermal, and Vibration Testing and Analysis and was Centered around a $1.15 Spring from Sears and Roebuck. The Air Force Recommended that They (the Commercial Community) Study the OSCAR 1 Satellite.The Air Force Recommended that They (the Commercial Community) Study the OSCAR 1 Satellite.

9 OSCAR 1 RESULTS  Reported Contacts in 28 countries, over 570 Amateurs Copied the Signal  Remained in Orbit for 22 Days  Data Gathered, was used to Study Ionosphere Propagation and Process Orbital Data  The Project Demonstrated the Abilities to Design, Build, Coordinate with Government Agencies  OSCAR I builders were often asked how much did it cost. Out of pocket expensed for all the materials to build the satellite at about $26.

10 OSCAR 1 MODEL

11 OSCAR II  Same Basic Design with the Exception of Different Thermal Coating. Reduced Internal TemperaturesReduced Internal Temperatures Extending Battery LifeExtending Battery Life  The Output Power Reduced from 140mW to 100mW Reducing Power Drain  The Life of this Satellite - 18 days, 295 Orbits Before the Telemetry Beacon was Lost.

12 OSCAR III  OSCAR III Carried Two Beacon Transmitters One to Provide TelemetryOne to Provide Telemetry A Second with a Continuous Carrier for Propagation Studies and Tracking.A Second with a Continuous Carrier for Propagation Studies and Tracking.  Also Carried a 50 khz wide transponder Received on 146 mhzReceived on 146 mhz Amplified and Retransmitted the signal at about 144 mhz.Amplified and Retransmitted the signal at about 144 mhz.  This Was the First Satellite Allowing Amateurs to Communicate Via a Space Vehicle.  Launched in March 1965 in a Higher Orbit than Previous Two  Transponder Operated for 18 Days and Approximately 1000 Amateurs in 22 Countries were Heard.

13 Current Popular Satellites  AO – 7  AO – 27  SO - 50  AO - 51  VU - 52  ISS (ARISS Program)  PCSAT (US Naval Academy)

14 Transponder Operating Modes And Prediction Software

15 Transponder Operating Modes  Analog Voice and CW SSB CW and Voice (Multiple Channel)SSB CW and Voice (Multiple Channel) FM Voice only (Single Channel)FM Voice only (Single Channel)  Digital Modes Packet (Store and Forward)Packet (Store and Forward)  1200 baud FSK  9600 baud PSK APRSAPRS

16 Analog SSB Mode  Single Side Band (FO-29 Inverting) 2m Uplink: – MHz SSB/CW2m Uplink: – MHz SSB/CW 70cm Downlink: MHz SSB/CW70cm Downlink: MHz SSB/CWNOTE: Normal – UP/DOWN link Frequencies Track Together Inverting – UP/DOWN link Frequencies Don’t Track Together

17 Analog Modes  Satellites AO 7 (SSB) Mode B 70cm Up 2m DownAO 7 (SSB) Mode B 70cm Up 2m Down FO 29 (SSB) Mode J 2m Up 70cm DownFO 29 (SSB) Mode J 2m Up 70cm Down VU 52 (SSB) Mode V 2m Up Mode U 70cm DownVU 52 (SSB) Mode V 2m Up Mode U 70cm Down SO 50 (FM) Modes VU SO 50 (FM) Modes VU AO 51 (FM) Modes VU, LU …AO 51 (FM) Modes VU, LU … AR(ISS) (FM) MHz up MHz DownAR(ISS) (FM) MHz up MHz Down AO 16 UP 2M (FM) Up 70CM (DSB) DownAO 16 UP 2M (FM) Up 70CM (DSB) Down

18 New Mode Designations   Example: Mode V/U VHF Uplink UHF Downlink Mode L/U 1.2 GHZ Uplink UHF Downlink MODEBand V145 MHz U435 MHz L1.2 GHz S2.4 GHZ

19 Prediction Software Used to Predict Satellite Passes For Your Station’s Location -AOS Acquisition of Signal -LOS Loss of Signal -Azimuth (From North) -Elevation (Above Local Horizion) -Doppler Shift (Frequency Tuning)

20 Doppler Shift

21 Manual Tracking (Pre PC’s)

22 SatScape

23 Ham Radio Deluxe

24 On-Line Predictions

25 Station Settings

26 Keplerian Elements Describe the Shape of the Satellite’s Orbit Sample of 2 Line NORAD Format ISS U 98067A AO U 04025K

27 Orbit Shape

28 Low Earth Orbit

29 Molniya Orbit (Elliptical)

30 Pass Predictions

31 Local Horizon View

32 Getting Started   Case 1 – Limited Equipment / Funds   Case 2 – Automated Station

33 How Do I Get Started  Dual Band HT 2m / 70cm Duplex Mode  Arrow Type Antenna  Tune Radio  Know When the Satellite will Appear Aim the AntennaAim the Antenna  Listen for Signal  Call  Have a Helper Log the Contact!

34 Dual Band HT  2Meter FM  70CM FM  Full Duplex Mode  Speaker Mike Helpful

35 Arrow Antenna

36 Arrow Antenna & HT

37 Homebrew Your Own

38 Automated Satellite Station

39 System Tasks When Satellite is in Range  Antenna Control Compute Satellite PositionCompute Satellite Position Send Azimuth Elevation to controllerSend Azimuth Elevation to controller Steer the Antenna Array During the PassSteer the Antenna Array During the Pass  Radio Control Compute FrequencyCompute Frequency  Uplink Doppler Shift  Downlink Doppler Shift Send Data To RadioSend Data To Radio

40 Automated Station Block Diagram

41 SAEBER Track Antenna Controller

42 Stamp II Micro-Processor  Reads Voltage to Determine Position AZAZ ELEL  Calculates New Position for Array Turn on/off Proper Relay to Move ArrayTurn on/off Proper Relay to Move Array  Loop and Do It Again Until Pass is Complete  Sample of Program in Stamp II Processor

43 Stamp II Code Sample

44 Field Day Satellite Array

45 Contacts  Other Hams Within Same Satellite Foot Print  ISS Crew Members (ARISS Project)  Digital Store Forwarding Messaging (Packet)  APRS Via Satellite (Automated Position Reporting System)

46 Bill McArthur (KC5ACR) Operating NA1SS Commander ISS Expedition 12

47 Sunita Williams (KD5PLB) ISS School Contact

48 Mike Finche (KE5AIT)

49 Future Satellites  “EAGLE” (Built by AMSAT) High Earth Orbiting (Elliptical Orbit)High Earth Orbiting (Elliptical Orbit) Software Defined Transponder (Software Defined Radio)Software Defined Transponder (Software Defined Radio) Linear Transponders, DigitalLinear Transponders, Digital  P3E (Built by AMSAT DL) High Earth OrbitHigh Earth Orbit Test Bench for P5A Mars MissionTest Bench for P5A Mars Mission Linear Transponders (Many Bands)Linear Transponders (Many Bands)  Intelsat Geo-Stationary Available full time Full Time AccessFull Time Access Emergency / Disaster CommunicationsEmergency / Disaster Communications  SuitSat II

50 WEB Links     

51 SUMMARY  Look at Project OSCAR History  Operating Modes  Prediction Software  Getting Started  Other User of Amateur Satellites  Future Projects

52 Questions?


Download ppt "Amateur Space Communications Albert - N4ZFG Space Communications  Look at Project OSCAR History  Operating Modes  Prediction Software  How do I get."

Similar presentations


Ads by Google