Presentation is loading. Please wait.

Presentation is loading. Please wait.

Quantum Lasers EE 566 Optical Communications Massoud MOMENI

Similar presentations

Presentation on theme: "Quantum Lasers EE 566 Optical Communications Massoud MOMENI"— Presentation transcript:

1 Quantum Lasers EE 566 Optical Communications Massoud MOMENI
Grad Microelectronics Quantum Lasers, M. Momeni

2 Overview Quantum Lasers Q L Single-Quantum Well Laser SQW L
Multiple-Quantum Well Laser MQW L Separate Confinement Heterostructure Laser SCH L Graded-Index SCH Laser GRINSCH L Quantum Cascade Laser QC L Quantum Dot Laser QD L 2. Summary 3. References and… Quantum Lasers, M. Momeni

3 1. Quantum Lasers LASER = Light Amplification by Stimulated Emission of Radiation Quantum Lasers, M. Momeni

4 Single-Quantum Well Laser (SQWL)
V > 0 P p N EV EC EFp EFn Double Heterostructure: Eel nm hf Ehole Basic Laser condition: or, alternatively, Quantum Lasers, M. Momeni

5 Refractive Index and Mode Profile
Homostructure Single Heterostructure (SHS) Double Heterostructure (DHS) p+ n+ P p n+ P p N n optical field Optical confinement is higher for a DHS Electrical confinement is higher for a DHS  lower Ith Quantum Lasers, M. Momeni

6 Multiple-Quantum Well Laser (MQWL)
MQW DFB MQW using isotype SQW: P p EV EC mini bands P p hf MQW DFB Quantum Lasers, M. Momeni

7 Separate Confinement Heterostructure (SCH)
InP InGaAsP InGaAs hf x MQW region 5 nm 10 nm 50 nm EV SCH region cladding Quantum Lasers, M. Momeni

8 Graded-Index SCH Laser (GRINSCH L)
cladding GRIN region MQW region EC EG ( InP ) EG ( InGaAsP ) EG ( InGaAs ) EV n x Quantum Lasers, M. Momeni

9 Quantum Cascade Laser (QC L) — Principle
interband transition: intersubband transition: Eappl Tunneling rate >> 3 = 1 ps and 2 = 0.3 ps << 32 > 1 ps  population inversion Quantum Lasers, M. Momeni

10 QC Laser — -Tailoring Quantum Lasers, M. Momeni

11 QC Laser — Data Data [1–5]: L Pout Jth [A/cm2] / Eth [kV/cm] T
[mW] Jth [A/cm2] / Eth [kV/cm] operation mode T first demo [year] $$$ 3.4 – 80 200 – 300 (CW) up to 1000 (PM) 250 – 290 / 7.5 – 48 PM or CW on cooler 350 1994 AT&T Bell Labs (later) Material systems: GaAs based, InP based, Si / SiGe on GaSb, InAs / AlSb on GaSb CW = continuous wave; PM = pulse mode Applications [1–6]: Military and Security Commercial, Medical Free-Space Optical Communication Systems and Astronomy Gas detection based on laser spectroscopy with CW or pulsed QC DFB lasers (chemical sensors) Quantum Lasers, M. Momeni

12 Quantum Dot Lasers (QD L) — 1. Principle
b) tunneling-injection QD laser: a) schematic view: Quantum Lasers, M. Momeni

13 QD L — 2. Principle electrons n-cladding p-cladding OCL QD holes
a) Prevention of parasitic b) “Limit case” recombination in the OCL n-cladding p-cladding OCL QD electrons holes Quantum Lasers, M. Momeni

14 2. Summary Quantum Lasers use the structures we have discussed so far in order to optimize the properties of a simple Fabry-Perot Laser (L, R, g, ), Increase efficiency () reduce the threshold current (Ith) and its temperature dependency, change the wavelength of the laser beam (), achieve continuous wave (CW) RT, and increase the output power (P). Fabrication: Metallorganic chemical vapor deposition MOCVD Molecular beam epitaxy MBE Quantum Lasers, M. Momeni

15 What we left out… (more presentations?)
Basics: Quantum Effects (energy quantization, first and second order tunneling effect,…) Simple Fabry Perot Laser (FPL) and characteristics Concept of gain-guided (active) or index-guided (passive) lasers (wave guiding), e.g. in buried heterostructure lasers (BHS), or separate lateral confinement (LC) Distributed bragg reflector (DBR), distributed feedback bragg (reflector) (DFB) R&D: Blue Lasers or GaN Lasers Tunable Lasers (TL) or Tunable Diode Lasers (TDL) Vertical Cavity Surface Emitting Lasers (VCSEL) Strained heterostructure QW lasers Quantum Lasers, M. Momeni

16 3. References (QC L) [1] Sirtori C., Nagle J., “Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared.” Comptes Rendus Physique, In Press, Corrected Proof, Sep. 2003 [2] Garciaa M., Normand E., Stanley C.R., Ironside C.N., Farmer C.D., Duxbury G., Langford N., "An AlGaAs–GaAs quantum cascade laser operating with a thermoelectric cooler for spectroscopy of NH3.“ Optics Communications, In Press, Uncorrected Proof, Sep [3] Köhler, R., Tredicucci A., Beltram F., Beere H.E., Linfield E.H., Davies A.G., Ritchie D.A., Iotti, R.C., Rossi F., "Terahertz semiconductor-heterostructure laser" letters to nature, vol. 417 no. 6885, pp. 156–159, May 2002. [4] Sirtori C., "Applied physics: Bridge for the terahertz gap." Nature news and views, vol. 417, no. 6885, pp. 132–133, May 2002. [5] Beck M., Hofstetter D., Aellen T., Faist J., Oesterle U., Ilegems M., Gini E., Melchior H., “Continuous wave operation of a mid-infrared semiconductor laser at room temperature.” Science, vol. 295, issue 5553, pp. 301–305, Jan [6] Kosterev A.A., Tittel F.K., "Chemical Sensors Based on Quantum Cascade Lasers." IEEE Journal of Quantum Electronics, vol. 38, no. 6, , pp. 582–591, June 2002. Quantum Lasers, M. Momeni

17 4. References (QD L) [7] Asryan L.V., Luryi S., "Tunneling-Injection Quantum-Dot Laser: Ultrahigh Temperature Stability" IEEE Journal of Quantum Electronics, vol. 37, no. 7, pp. 905–910, July 2001. [8] Asryan L.V., Luryi S., Suris R.A., "Internal Efficiency of Semiconductor Lasers With a Quantum-Confined Active Region." IEEE Journal of Quantum Electronics, vol. 39, no. 3, pp. 404–418, March 2003. [9] Pelton M., Yamamoto Y., "Ultralow threshold laser using a single quantum dot and a microsphere cavity." Physical Review A, vol. 59, no. 3, pp. 2218–2241, March 1999. [10] Maximov M.V., Asryan L.V., Shernyakov Yu.M., Tsatsul’nikov A.F., Kaiander I.N., Nikolaev V.V., Kovsh A.R., Mikhrin S.S., Ustinov V.M., Zhukov A.E., Alferov Zh.I., Ledenstov N.N., Bimberg D., "Gain and Threshold Characteristics of Long Wavelength Lasers Based on InAs/GaAs Quantum Dots Formed by Activated Alloy Phase Separation." IEEE Journal of Quantum Electronics, vol. 37, no. 5, pp. 676–683, May 2001. [11] Luryi S., Xu J.M., Zaslavsky A., Future Trends in Microelectronics: the Nano Millennium, Wiley-IEEE Press, 2002, pp. 219–230. [12] Bludau, W. Halbleiter-Optoelektronik, München, Wien: Hanser, 1995, pp. 122–123, 151–155, 180–187. Quantum Lasers, M. Momeni

18 History of Lasers Welch D.F., “A Brief History of High-Power Semiconductor Lasers.” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 6, pp. 1470–1477, Dec Laser history 1917–1996: Laser at Bell Laboratories from 1958–1998: Quantum Lasers, M. Momeni

19 Where to find papers… Where to look for articles on these topics: (use ScienceDirect & IEEE Xplore®) IEEE IEEE Journal of Quantum Electronics IEEE Photonics Technology Letters IEEE Transactions on Electron Devices IEEE Proceedings on Optoelectronics Nature Science Applied Physics Letters Laser Focus World Elsevier Elsevier Optics Communications Elsevier Comptes Rendus Physique Quantum Lasers, M. Momeni

20 Quantum Lasers, M. Momeni

21 Wanna BUY a quantum laser?
Go online Click on to get to Laser Focus World Look for “Buyers Guide” in the left column and click on it! Type the keywords! E.g. “Quantum Cascade Laser” You’ll get a list with companies (in this case just one) offering a quantum laser or something related to it, click on the entry and then the company’s link! You are transferred to the company’s website BUY ALL YOU WANT OR ALL YOU NEED! (datasheet, images etc. readily available) Quantum Lasers, M. Momeni

22 1. Example: Quantum Cascade Laser
Laser Components Instrument Group Address: 10 Upton Drive Wilmington, MA 01887 Phone: Fax: URL: Employees: 5 Year Founded: 1976 Job Openings: unfortunately no… For prices, talk to Gary Hayes: – US $ This product is a… HIGHLIGHT! Quantum Lasers, M. Momeni

23 2. Example: Single-Mode SQW GRINSCH L
For prices, call John Carry: Axcel Photonics, Inc. Address: 45 Bartlett Street Marlborough, MA 01752 Phone: Fax: URL: Employees: 18 Job Opening: Office Manager 1 US $ per mW, up to 500 mW n N E Quantum Lasers, M. Momeni

24 Pricelist (all in US Dollars)
VCSEL MQW DFB MQW DFB Structures: InGaAsP MQW DFB 1550 nm InGaAsP MQW DFB 1310 nm (more than 600 $ off if you choose a FP!) AlGalnP Index guided MQW structures – VCSEL Structures: (for each of 50) – (for a single one) Blue Laser Module 1, – 2, System 2, – 9,495.00 Quantum Cascade Lasers astronomical, even for the diode only Sources: INTELITE, Inc. Thorlabs GmbH Laser Components Instrument Group Axcel Photonics, Inc. Quantum Lasers, M. Momeni

25 Abbreviations (Alphabetical Order)
BHS / BH Buried Heterostructure CW Continuous Wave QL Quantum Laser DBR Distributed Bragg Reflector QW Quantum Well DFB Distributed Feedback Bragg SCH Separate Confinement Heterostructure DHS Double Heterostructure SQW Single-Quantum Well FP Fabry Perot QC Quantum Cascade GRINSCH Graded-Index SCH QD Quantum Dot LASER Light Amplification by Stimulated Emission of Radiation SHS Single Heterostructure LC Lateral Confinement SLC Separate Lateral Confinement MQW Multiple-Quantum Well TL Tunable Lasers OLC Optical Confinement Layer TDL Tunable Diode Lasers PM Pulse Mode VCSEL Vertical Cavity Surface Emitting Lasers Quantum Lasers, M. Momeni

26 For those who want to know more…
Tutorial on Semiconductor Lasers Quantum Lasers, M. Momeni

Download ppt "Quantum Lasers EE 566 Optical Communications Massoud MOMENI"

Similar presentations

Ads by Google