Download presentation

Presentation is loading. Please wait.

Published byBlake Wilkerson Modified over 3 years ago

1
Whiteboardmaths.com © 2010 All rights reserved 5 7 2 1

2
Intro Rotations An object can be rotated to a new position. To describe the rotation fully, you need to specify: (1) The centre of rotation. (2) The direction of rotation (Clockwise (CW) or Ant-Clockwise (ACW)). (3) The angle of rotation. A A’ This grid shows that A has been rotated 90 o ACW about P to A’. P P A A’ This grid shows that A has been rotated 90 o CW about P to A’.

3
Rotations On the grid below, triangle T has been rotated 90 o ACW about the origin (0,0) to T’ and 180 o CW about the origin to T’’. Note that a 180 ACW rotation would still transform T to T’’. y T T’ T’’

4
Rotations Tracing paper can help you in rotating an object about a given point. In the example below the triangle is to be rotated 90 o ACW about the origin. y 1. Draw shape. 2. Hold pencil point firmly on centre of rotation and turn paper through required angle.

5
Tracing paper can help you in rotating an object about a given point. In the example below the triangle is to be rotated 90 o ACW about the origin. y 1. Draw shape. 2. Hold pencil point firmly on centre of rotation and turn paper through required angle.

6
Rotations In this example the kite is to be rotated 180 o CW about point (1,1). y 1. Draw shape. 2. Hold pencil point firmly on centre of rotation and turn paper through required angle.

7
Rotations In this example the kite is to be rotated 180 o CW about point (1,1). y 1. Draw shape. 2. Hold pencil point firmly on centre of rotation and turn paper through required angle.

8
Q1/2 Rotations Question 1. Rotate the rectangle R, 90 o CW about (0,0) and mark as R’ y R Q Question 2. Rotate the quadrilateral Q, 180 o about (-1,1) and mark as Q’ R’ Q’

9
Rotations To find the centre of rotation use trial and improvement by holding the pencil firmly on a point that you think may be the centre of rotation then turn the tracing paper until object and image coincide. Remember a ¼ turn of the tracing paper equates to an angle of 90 o whereas a ½ turn equates to 180 o. y T T’ x x x x x x x In this case the transformation is a clockwise rotation of 90 o about the point (-3,2)

10
Q3/4 Rotations Question 3. Describe fully the transformation that takes R to R’. y Q Q’ Question 4. Describe fully the transformation that takes Q to Q’. A rotation of 180 o about the point (1,1) An ACW rotation of 90 o about point (-1,0) R R’

11
Question 1. Rotate the rectangle R, 90 o CW about (0,0) and mark as R’ Question 2. Rotate the quadrilateral Q, 180 o about (-1,1) and mark as Q’

12
Question 3. Describe fully the transformation that takes R to R’. Question 4. Describe fully the transformation that takes Q to Q’. x 024 6 -2 -4 -6 2 4 -2 -4 T 1 3 -3 13 5 -3 -5 y Q Q’ R R’

Similar presentations

OK

Rotations Shape and Space. Rotation Which of the following are examples of rotation in real life? Can you suggest any other examples? Opening a door?

Rotations Shape and Space. Rotation Which of the following are examples of rotation in real life? Can you suggest any other examples? Opening a door?

© 2018 SlidePlayer.com Inc.

All rights reserved.

To ensure the functioning of the site, we use **cookies**. We share information about your activities on the site with our partners and Google partners: social networks and companies engaged in advertising and web analytics. For more information, see the Privacy Policy and Google Privacy & Terms.
Your consent to our cookies if you continue to use this website.

Ads by Google

Ppt on bank lending regulations Ppt on supply chain management of a mule Ppt on track feed battery charger Ppt on chapter 3 atoms and molecules youtube Ppt on vegetarian and non vegetarian Ppt on eddy current resistance Ppt on propagation of sound waves Ppt on index numbers Ppt on instant messaging and chat Download ppt on indus valley civilization artifacts