Download presentation

Presentation is loading. Please wait.

Published byAnne Spencer Modified over 2 years ago

1
©Larry F. Hodges (modified by Amos Johnson) 1 Arbitrary 3-D View-Plane

2
©Larry F. Hodges (modified by Amos Johnson) 2 Specifying An Arbitrary 3-D View Two coordinate systems World reference coordinate system (WRC) Viewing reference coordinate system (VRC) First specify a viewplane and coordinate system (WRC) View Reference Point (VRP) View Plane Normal (VPN) View Up Vector (VUP) Specify a window on the view plane (VRC) Max and min u,v values ( Center of the window (CW)) Projection Reference Point (PRP) Front (F) and back (B) clipping planes (hither and yon)

3
©Larry F. Hodges (modified by Amos Johnson) 3 Specifying A View

4
©Larry F. Hodges (modified by Amos Johnson) 4 Normalizing Transformation 1.Translate VRP to origin 2.Rotate the VRC system such that the VPN (n-axis) becomes the z-axis, the u-axis becomes the x-axis and the v-axis becomes the y-axis 3.Translate so that the CoP given by the PRP is at the origin 4.Shear such that the center line of the view volume becomes the z-axis 5.Scale so that the view volume becomes the canonical view volume: y = z, y = -z, x=z, x = -z, z = z min, z = z max

5
©Larry F. Hodges (modified by Amos Johnson) 5 1. Translate VRP to origin (100-VRPx) (010-VRPy) (001-VRPz) (000 1)

6
©Larry F. Hodges (modified by Amos Johnson) 6 2. Rotate VRC We want to take u into (1, 0, 0) v into (0, 1, 0) n into (0, 0, 1) First derive n, u, and v from user input: n = VPN / ||VPN|| u = (Vup x n) / ||Vup x n|| v = n x u

7
©Larry F. Hodges (modified by Amos Johnson) 7 2. Rotate VRC (cont.) (uxuyuz0)(vxvyvz0)(nxnynz0)(0001)(uxuyuz0)(vxvyvz0)(nxnynz0)(0001)

8
©Larry F. Hodges (modified by Amos Johnson) 8 3. Translate so that the CoP given by the PRP is at the origin (100-PRP u ) (010-PRP v ) (001-PRP n ) (0001)

9
©Larry F. Hodges (modified by Amos Johnson) 9 4. Shear such that the center line of the view volume becomes the z-axis Center line of window lies along the vector [CW - PRP], this is the direction of projection, DoP. PRP

10
©Larry F. Hodges (modified by Amos Johnson) 10 Shear (cont.) ((umax + umin)/2 )(PRPu) CW =((vmax + vmin)/2 )PRP=(PRPv) (0)(PRPn) (1)(1) ((umax + umin)/2 - PRPu) DoP = [CW-PRP] = ((vmax + vmin)/2 - PRPv) (0 - PRPn) (1) The shear matrix must take this direction of projection and shear it to the z-axis, DoP' = [0, 0, DoPz].

11
©Larry F. Hodges (modified by Amos Johnson) 11 Shear (cont.) (10SHx0 ) We want SH*DoP =DoP' SH =(01SHy0 ) (0010 ) (0001 ) (10SHx0 ) ((umax + umin)/2 - PRPu ) (0) (01SHy0 ) ((vmax + vmin)/2 - PRPv )= (0) (0010 ) (0 - PRPn ) (DoPz) (0001 ) ( 1 ) (1) SHx = -DoPx/DoPz, SHy = -DoPy/DoPz

12
©Larry F. Hodges (modified by Amos Johnson) 12 5. Scale z=-PRP n z= -PRP n + Bz=-PRP n + F y = -v + v maxmin 2 y = v - v max min 2 Y axis +1 -Z Back Clipping Plane z=-1 Front Clipping Plane y= -z y= z Before Scale After Scale View plane

13
©Larry F. Hodges (modified by Amos Johnson) 13 5. Scale (cont.) Scale is done in two steps: 1. First scale in x and y xscale = -2PRPn/(umax - umin) yscale = -2PRPn/(vmax - vmin) 2. Scale everything uniformly such that the back clipping plane becomes z = -1 xscale = -1 / (-PRPn + B) yscale = -1 / (-PRPn + B) zscale = -1 / (-PRPn + B)

14
©Larry F. Hodges (modified by Amos Johnson) 14 5. Scale (cont.) (Sx000 ) (0Sy00 ) (00Sz0 ) (0001 ) Sx = 2PRPn / [(umax - umin) (-PRPn + B)] Sy = 2PRPn / [(vmax - vmin) (-PRPn + B)] Sz = -1 / [(vmax - vmin) (-PRPn + B)]

15
©Larry F. Hodges (modified by Amos Johnson) 15 Total Composite Transformation Nper = [Sper ][SHper ][T(-PRP) ][R ][T(-VRP)]

Similar presentations

OK

January 19, 20161. y X Z Translations Objects are usually defined relative to their own coordinate system. We can translate points in space to new positions.

January 19, 20161. y X Z Translations Objects are usually defined relative to their own coordinate system. We can translate points in space to new positions.

© 2017 SlidePlayer.com Inc.

All rights reserved.

Ads by Google

Download ppt on red fort delhi Ppt on first conditional exercise Ppt on obesity diet chart Ppt on non renewable sources of energy Ppt on levels of organization in biology Ppt on beer lambert law calculator How to open password protected ppt on mac Ppt on microcontroller based home security system Ppt on data handling for class 10 Ppt on cloud computing services